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Abstract 

 

Lettang, Francesca Jeanne (M.S., Aerospace Engineering Sciences) 

An Analysis of Hyperspectral Data of the Greenland Ice Sheet 

Thesis directed by Professor William J. Emery 

 

Supraglacial melt ponds are common features of ice sheets and valuable 

parameters in the mass budget of the cryosphere.  In addition, melt ponds are a useful 

proxy for monitoring global climate change as they are influenced by both the 

temperature of the surrounding ice and the incident radiation, which itself is influenced 

by the atmosphere.  This document will describe an investigation of supraglacial melt 

ponds in a small region of the southwestern coast of the Greenland Ice Sheet, which was 

surveyed using an unmanned aerial vehicle in July of 2008.  The data gathered during this 

expedition will be mined for melt ponds using Iterative Self-Organizing Data Analysis 

Technique, Adaptive Boosting, and Maximum Likelihood methods, and this information 

will be used to estimate the size and volume of the melt ponds using the known 

attenuation properties of water and the Beer-Lambert-Bouguer Law.  Comparisons of the 

lake location data from UAV and satellite observations indicates that the results of the 

Adaptive Boosting and Maximum Likelihood algorithms are accurate to within 300 

meters, or approximately ten pixels in the satellite data.  The results of the lake depth 

analysis were inconclusive due to disagreements in the outcome when the calculations 

were made with different observing wavelengths and because of a lack of ground truth 

data.  The most likely error source is the presence of suspended sediment in the lake, 
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floating ice crystals on the lake, either of which would affect the attenuation coefficient 

of the water, or settled sediment on the lake bottom, which would affect the lake bottom 

reflectivity.  Finally, attempts to develop methods to detect drained supraglacial lakes led 

to the promising possibility that texture analysis or observation band ratio analysis could 

reveal drained lake locations without the advantage of change detection.  However, 

texture analysis proved useful only in the UAV data, which has an extremely high spatial 

resolution, and no correlation between lake depth and observation band ratio was 

observed.
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I. Introduction 

 One extremely important task in this day and age is learning about the impact 

of human activities on Earth’s radiation budget and determining if it is a significant 

cause of global climate change.  This is also a daunting undertaking, given the 

extreme complexity of the Earth system as a whole.  Many satellites have been 

launched and many field campaigns waged in the attempt to answer this very question 

by gathering enough data to create an accurate model of the Earth system.  Whether 

they have succeeded is a matter of debate, so the quest for more data and better 

models continues. 

 The Arctic Multisensor Cyrospheric Observation Experiment (MUSCOX) 

was one such enterprise.  During July of 2008, a team of scientists and engineers 

traveled to western Greenland intending to image supraglacial lakes using an 

Airborne Imaging Spectrometer, made by Resonon, flying aboard a Manta UAV, 

made by BAE Systems, and compare the hyperspectral imagery to in situ depth 

measurements of the same lakes.  Unfortunately, this mission demonstrated an 

important drawback of using supraglacial lakes as a method for measuring global 

climate change: by the time the mission began, the target lakes had already drained.  

As a result, while the drained lakes and an additional nearby filled lake were imaged 

using the UAV, no corresponding in situ depth measurements were taken.  In spite of 

this, the MUSCOX data is an extremely valuable collection of information about the 

Greenland Ice Sheet in its area of study.  In particular, its spatial resolution, which is 

on the order of tens of centimeters, is unachievable using current satellite technology 



www.manaraa.com

  2 

   

   

   

   

   

and may provide unprecedented accuracy in the estimation of the size and volume of 

glacial lakes.  This feature will be used to its full advantage in the analysis to follow. 

A. Supraglacial Lakes as a Proxy for Global Climate Change 

 The mechanism that forms glacial lakes is summarized in figure 1.  Energy 

from the sun that is not attenuated by the atmosphere reaches Earth’s surface, where it 

can be reflected or absorbed.  When the surface is covered in ice, the majority of the 

light is reflected because ice has a high albedo.  However, the energy that is not 

reflected is absorbed by the ice, which converts it into heat.  If the temperature of the 

ice is raised to its melting point, then the ice begins to melt and the liquid water 

collects in melt ponds.  Like ice, the liquid water absorbs or reflects the energy from 

the sun, but liquid water has a much lower albedo.  Therefore, the water absorbs more 

energy than ice, becoming warmer itself and also transferring energy to the 

surrounding ice.  The ice then melts faster, creating a positive feedback loop 

(Perovich et. al., 2002). 

 

Figure 1: The radiative transfer of melt ponds. 
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Several experiments on sea ice have shown that the reflectivity of first year 

ice is 0.6 and the reflectivity of multiyear ice is 0.65, whereas the presence of melt 

ponds on the ice reduces the reflectivity in the area to 0.2 to 0.4 (Eicken et. al., 2004).  

Though freshwater ice and liquid water have slightly different albedos, the trend of 

water reducing the average reflectivity in the area is the same.  When ice and water 

absorb incoming radiation, their temperatures increase as given by equation (1) where 

ΔT is the change in temperature, Δt is the change in time, Ia is the absorbed radiation, 

cp is the specific heat capacity, ρ is the density of the material, and d is the thickness 

of the ice-covered surface.  The specific heat capacity of pure ice at -10
o
C is 2.02 

J/g/K at standard atmospheric pressure, and the specific heat capacity of pure water at 

0.01
o
C is 4.2170 J/g/K at 1 bar (CRC Handbook of Chemistry and Physics, 2010).  

This indicates that, if the same quantity in mass of ice and water absorb the same 

amount of heat, the temperature of the ice will increase faster.  The ice will increase 

in temperature until it reaches its melting point, at which point it will begin to melt. 

 
dc

I

t

T

p

a







       (1) 

Equation (2) gives the rate of melting of ice at its melting point.  In this 

equation, Δd is the amount of melted ice, measured in terms of its depth, and ΔHfus is 

the heat of fusion, which is 6.01 kJ/mol (333.61 kJ/kg) for water (CRC Handbook of 

Chemistry and Physics, 2010).  The heat transfer of the ice-water system is completed 

by the second law of thermodynamics, which states that a system will seek 

equilibrium through energy transfer from the hot substance to the cold substance.  
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Therefore, energy transfer by convection and conduction will occur between the 

liquid water and the ice, attempting to equalize the temperature between the two 

substances, which will cause additional ice to melt. 

 
fus

a

H

I

t

d







       (2) 

Supraglacial lakes are not a new feature of ice sheets, but changes in their 

frequency of occurrence and average volume can be used as an indicator of global 

climate change.  Two features of global warming can influence the size of glacial 

lakes.  The greenhouse effect, the mechanism by which long wave radiation is 

absorbed and re-emitted by aerosols in the atmosphere to back Earth’s surface and the 

current leading theory for the cause of global warming, can increase supraglacial 

lakes because radiation from the sun can interact with the ice multiple times, causing 

the ice to absorb more heat each time.  Secondly, increases in the mean ambient 

temperature of Earth can increase the frequency of occurrence of melt ponds because 

the ice sheets would have a higher temperature as well, reducing the amount of heat 

they need to absorb before reaching their melting point. 

One of the mechanisms for draining melt ponds is for the water to find 

moulins, paths through cracks in the ice (Box and Ski, 2007).  During one in situ 

experiment in Greenland in 2006, a supraglacial lake with a volume of 0.044 ± 0.01 

km
3
 was observed as it drained, most likely through a moulin, in approximately 1.4 

hours (Das et. al., 2008).  During and after the drainage event, a nearby GPS station 

also observed changes in the height and velocity of the ice sheet in the area. Thus, the 
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presence of melt ponds has important implications in the mechanics of ice sheets, 

particularly the movement and dynamics of glaciers (Zwally, et. al., 2002). 

The flow of glaciers is at least partially defined by the friction between the ice 

and the underlying bedrock.  According to Boulton (2006), ice can be modeled as a 

plastic solid with a yield strength of 100 kPa.  In order for the ice to move, the 

average shear stress between the glacier and the bedrock, which is given in equation 

(3) for the case of strong coupling between the two surfaces, must be larger than 100 

kPa.  In this equation, τ is shear stress, ρi is the density of ice, g is the acceleration due 

to gravity, d is the ice thickness, and α is the slope of the surface beneath the ice. 

  singdi       (3) 

The presence of liquid water between the ice and the bedrock can act as a lubricant 

and significantly reduce the friction between the two surfaces, meaning that forces 

sufficient to cause the glacier to deform can occur for ice with a lower density, height, 

and slope than would be required without the presence of water.  As a result, water 

between the ice and the bedrock can cause glaciers to become more mobile and travel 

to low lying regions, including surrounding seas and oceans, more quickly, which in 

turn affects the salinity and temperature of the oceans and can change the water 

budget of the planet. 

Georgiou et. al. (2009), undertook a study of melt ponds in images of a small 

region of the Greenland ice shelf observed by the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) instrument and correlated the volume 

of supraglacial lakes to the number of positive degree days, days when the 
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temperature is above 0
o
C, preceding the observation.  They discovered that lake 

volume increases slowly from positive degree days 10 to 80 due to the contributions 

of snow melt, then lake volume increases more rapidly until approximately positive 

degree day 125 due to ice melt.  After positive degree day 125 the lakes begin to 

drain.  This study shows that the water budget of the Greenland Ice Sheet is strongly 

affected by the temperatures in the region. 

An additional study by Sundal et. al. (2009), using MODIS (Moderate-

resolution Imaging Spectroradiometer) data of the Greenland Ice Sheet in the years 

2003, 2005, 2006, and 2007, produced lake and runoff areas in three separate regions.  

This study indicates a high level of variability in supraglacial lake area by day and 

year and that supraglacial lakes form later in the melt season in locations at higher 

elevations and latitudes, and that years with large lake areas tend to have high 

temperatures during the melt season. 

Of course, the presence of melt water at the interface between glacial ice and 

the bedrock is not a recent development: glaciers and ice sheets at various locations 

have frequently been influenced by liquid water from both subglacial and supraglacial 

sources.  The important question is if the frequency and volume of liquid water on ice 

sheets has increased and, if it has, is that increase a response to human activity and 

what are the long term consequences to the ice sheets. 

B. Summary of Analysis 

This document will describe the analysis of very high spatial resolution 

hyperspectral data of a small area of the Greenland Ice Sheet in the visible and near 
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infrared regime, which was gathered by an unmanned aerial vehicle in July of 2008.  

The data will be mined for the locations and depths of supraglacial lakes with the 

objective of determining the volume of the lakes.  Several methods of separating lake 

pixels from ice pixels will be used.  Additionally, the data will be searched for 

evidence of drained supraglacial lakes with the intention of developing a method to 

determine the size of these former lakes.  For verification, the above analysis will also 

be performed on Landsat 7 ETM+ and the results compared. 

This analysis will be beneficial because the prevalence of glacial lakes is a 

useful proxy for global climate change and an important parameter in the study of the 

mass balance of ice sheets.  Developing a method of very accurately determining the 

volume of filled glacial lakes will be beneficial because glacial lakes play an 

important role in the water budget of ice sheets and the Earth system as a whole.  

Developing a method of detecting drained glacial lakes will be valuable because lakes 

often have short and unpredictable life spans, meaning that it is possible for satellite 

observations, such as Landsat with its 16 day repeat period, to miss them, especially 

if clouds interfere with an observation.  Learning the unique properties of drained 

lake locations will allow inferences to be made about glacial lakes for longer periods 

of time, reducing the probability that a lake will be missed. 

Figure 2 shows a map of the study area. 
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Figure 2: Study area. 

 

II. Data Specification 

Two data sources will be used for this analysis.  The primary data source is 

the MUSCOX mission.  The secondary data source is the Landsat 7 ETM+ 

(Enhanced Thematic Mapper Plus).  The Landsat data sets will be chosen to coincide 

in time and location with the MUSCOX data sets. 

A. MUSCOX 

The MUSCOX mission took place in July 2008, with the first mission flown 

on July 9 and the last on July 24.  In all, 26 data sets were collected, as summarized in 

table 23 in the appendix.  The data is uncalibrated and will be thought of in units of 
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photon counts.  Spectral data will be given in units of normalized photon counts. 

One target the MUSCOX mission is the Ilulissat Airport, on the south west 

coast of Greenland, where the UAV took off and landed.  It was imaged during tests 

of the UAV and spectrometer hardware.  These images will be used to verify the 

performance of the ground type detection software.  An example of a runway image 

in true color is given in figure 3.  This image corresponds to data set 26 as given in 

table 23. 

 

Figure 3: True color MUSCOX image of the runway at Ilulissat Airport. 

 

The ice and supraglacial lake images are located near Davis Strait.  Figure 4 

shows an example of an ice image, including a portion of a supraglacial lake, in true 

color.  This image corresponds to data set nine in table 23. 
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Figure 4: True color MUSCOX image of ice and a supraglacial lake. 

The spectrometer used on the MUSCOX mission imaged the targets in 60 

spectral bands in the visible and near infrared as summarized in table 24 in the 

appendix.  It uses a pushbroom scanning technique with 320 cross track pixels for a 

total angular field of view of 12.2
o
.  Of course, the size of the ground pixel varies 

based on the altitude and orientation of the UAV. 

The MUSCOX data was provided by Phillip Corcoran from BAE Systems, 

who was involved in the MUSCOX project. 

B. Landsat 7 ETM+ 

Landsat 7 was launched on April 15, 1999 and has been gathering science data 

ever since.  Table 1 gives the important features of the Landsat 7 orbit and the ETM+ 

sensor summarized from NASA: Landsat 7 Science Data User’s Handbook (2009). 
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Table 1: Important features of Landsat 7 operations. 

Orbit Altitude 705 

Orbit Type Sun Synchronous 

Inclination 98.2
o
 

Orbital Period 98.89 minutes 

Ground Track Repeat 16 days 

Scan Method Whisk Broom 

Swath Width 185 km 

 

The bands of the ETM+ sensor and the spatial resolution of each band are 

given in table 2, summarized from Scaramuzza et. al. (2004).   Only the 30 meter 

resolution bands will be used in this analysis. 

Table 2: Landsat 7 ETM+ bands. 

Channel Spectral Range 
Spatial 

Resolution (m
2
) 

1 441-514 nm 30 

2 519-601 nm 30 

3 631-692 nm 30 

4 772-898 nm 30 

5 1.547-1.748 μm 30 

6 10.31-12.36 μm 60 

7 2.064-2.346 μm 30 

8 515-896 nm 15 

 

Landsat 7 imaged the same area of Greenland approximately concurrently 

with the MUSCOX experiment, creating images such as that shown in figure 5.  The 

inlaid regions are the areas which were imaged by the UAV.  The outflow region 

pictured is the Jakobshavn Isbrae, a glacier which empties into Disko Bay.  In this 

image, red corresponds to the 631 to 692 nm band, green corresponds to the 519 to 

601 nm band, and blue corresponds to the 441 to 514 nm band.  The image was taken 

on July 19, 2008. 
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Figure 5: Sample Landsat imagery from July 19, 2008. 

 

Two Landsat data sets will be used for the majority of this analysis.  The first 

was taken on July 3, 2008 and will be referred to as Landsat 1.  The second data set 

was taken on July 19, 2008 and will be referred to as Landsat 2. 

The Landsat data was retrieved using the Earth Explorer online tool provided 

by the United States Geological Survey.  As with the MUSCOX data, the Landsat 

data is provided in uncalibrated photon counts and will be presented here in 

normalized photon counts. 

III. Method 

This research has four objectives: 

1. Use various methods to distinguish supraglacial lakes from the surrounding 

ice. 

2. Determine the volume of the supraglacial lakes. 

3. Determine a method to distinguish drained supraglacial lakes from the 

Ilulissat Airport 

Outflow Region 

Filled Lake 

Drained 

Lake 1 

Drained 

Lake 2 
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surrounding ice. 

4. Use the information gathered from the previous three objectives to draw 

conclusions about the status of the Greenland Ice Sheet. 

The primary data source for this analysis will be the MUSCOX mission.  Data 

gathered by LANDSAT 7 will be used for comparison and long-term analysis.  The 

primary analysis tools will be the Interactive Data Language (IDL) and the 

Environment for Visualizing Images (ENVI).  Both software tools were created by 

ITT Visual Information Solutions. 

A. Preprocessing 

Before analysis can begin, several factors which influence the data must be 

taken into account or corrected.  These factors include the spatial location of the data, 

atmospheric attenuation, solar zenith angle, refraction of light, observation angle, and 

spatial resolution.  Conveniently, the MUSCOX data already has location data 

associated with each pixel, so geolocation is not necessary.  Similarly, the Landsat 

data has position information associated with it that is intended to be extracted using 

ENVI, so determining the locations of the Landsat data is a simple matter.  These 

locations will be assumed to be accurate for the purposes of this analysis. 

1. Atmospheric Attenuation 

In order to make corrections for atmospheric attenuation, knowledge of the 

properties of the atmosphere and the path the radiation takes through the atmosphere 

is required in order to apply Beer’s law to each channel of data.  However, 

atmospheric attenuation at the visible and near infrared wavelengths used by 
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MUSCOX and Landsat is small, as discussed in Petty (2006) chapter 7.  As a result, 

within a single MUSCOX image or a small area of a Landsat image, it is valid to 

assume that any pixel to pixel differences in the atmospheric attenuation are 

negligible.  Therefore, no corrections for attenuation though the atmosphere will be 

applied. 

Clouds are one exception to this rule.  The MUSCOX observation height is 

below the level of most clouds, avoiding the issue, but if a visual inspection of the 

Landsat data reveals clouds in the area of interest, then that image will not be used for 

analysis.  Another exception is aerosols in the atmosphere.  Aerosols can vary greatly 

in concentration and no in situ measurements were taken at the time of the MUSCOX 

mission.  However, in the Arctic regions, the influence of aerosols is generally small 

(Stroeve, et. al., 1997).  Additionally, like the properties of the rest of the atmosphere, 

the effect of aerosols can be assumed not to vary widely within a small area in a 

single observation.  Data on the concentration of aerosols in the area at the times of 

interest may have been observed by another satellite, but the application of that data 

is left to a future investigator. 

2. Solar Zenith Angle 

Similar to the effects of atmospheric attenuation, solar zenith angle does not 

change significantly during the short observation times for each data set.  However, 

knowledge of the solar zenith angle is still required, particularly for calculations of 

water depth, because path length through the water is dependent upon the angle of the 

radiation when it reaches the water.  This is especially important in high latitude 
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locations such as Greenland, where the sun is always low in the sky. 

Solar zenith angle (SZA) was calculated for each observation using the Solar 

Calculation tools created by the Earth System Research Laboratory Global 

Monitoring Division, a part of the National Oceanic & Atmospheric Administration 

(NOAA), which is in turn based on equations in Astronomical Algorithms by Jean 

Meeus.
1
  Table 3 shows these solar zenith and azimuth angles, which include 

corrections for refraction through the atmosphere.  Since these angles do not change 

significantly in the course of a single observation, the solar angles were calculated for 

the time and location in the middle of each image.  For MUSCOX, the center location 

is the average of the latitudes and longitudes of each pixel in the image, since the 

maneuvers of the UAV could potentially cause the pixels which were in the middle of 

the observation temporally to be placed near the edge of the image spatially.  Solar 

elevation and azimuth information was included in the Landsat metadata, so it was 

not recalculated using the method described except for verification purposes. 

 

 

 

 

 

 

 

                                                 
1
 http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html 
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Table 3: Sun location of all observations. 

Instrument 
Observation 

Number 

Center 

Date and 

Time 

(UT) 

Center 

Location 

Sun 

Zenith 

Angle 

(degrees) 

Sun 

Azimuth 

Angle 

(degrees) 

MUSCOX 1 
7/9/2008 

00:03:59.02 

69
o
14’33.66” N 

51
o
3’30.05” W 

81.23 313.04 

MUSCOX 2 
7/9/2008 

00:05:22.58 

69
o
14’33.39” N 

51
o
3’30.29” W 

81.34 313.44 

MUSCOX 3 
7/9/2008 

00:07:29.03 

69
o
14’33.37” N 

51
o
3’30.73” W 

81.45 313.83 

MUSCOX 4 
7/9/2008 

00:09:14.75 

69
o
14’32.98” N 

51
o
3’31.02” W 

81.56 314.22 

MUSCOX 5 
7/9/2008 

00:10:57.99 

69
o
14’35.14” N 

51
o
3’40.10” W 

81.67 314.61 

MUSCOX 6 
7/16/2008 

01:08:08.97 

69
o
9’31.67” N 

50
o
51’20.16” W 

85.82 327.31 

MUSCOX 7 
7/16/2008 

01:16:15.46 

69
o
9’31.91” N 

50
o
51’20.06” W 

86.19 329.17 

MUSCOX 8 
7/17/2008 

02:58:29.55 

68
o
44’49.11” N 

49
o
31’43.72” W 

89.50 353.99 

MUSCOX 9 
7/17/2008 

03:09:29.94 

68
o
43’6.90” N 

49
o
2’3.68” W 

89.61 357.02 

MUSCOX 10 
7/17/2008 

03:12:39.51 

68
o
42’29.33” N 

49
o
1’21.61” W 

89.63 357.76 

MUSCOX 11 
7/18/2008 

01:41:50.52 

68
o
42’35.54” N 

49
o
1’31.00” W 

88.15 336.64 

MUSCOX 12 
7/18/2008 

02:22:51.47 

68
o
45’7.50” N 

49
o
30’59.68” W 

89.15 345.68 

MUSCOX 13 
7/18/2008 

02:24:41.97 

68
o
43’28.84” N 

49
o
30’59.99” W 

89.21 346.11 

MUSCOX 14 
7/18/2008 

02:33:48.18 

68
o
43’42.20” N 

49
o
31’57.43” W 

89.37 348.21 

MUSCOX 15 
7/18/2008 

02:34:08.76 

68
o
43’24.15” N 

49
o
31’57.11” W 

89.38 348.29 

MUSCOX 16 
7/19/2008 

02:05:09.06 

68
o
42’35.33” N 

49
o
1’31.36” W 

88.99 341.99 

MUSCOX 17 
7/19/2008 

02:08:34.57 

68
o
42’29.47” N 

49
o
1’57.45” W 

89.08 342.78 

MUSCOX 18 
7/19/2008 

02:56:49.54 

68
o
42’59.71” N 

49
o
30’13.49” W 

89.81 353.58 

MUSCOX 19 
7/19/2008 

03:00:02.04 

68
o
43’20.46” N 

49
o
30’1.00” W 

89.83 354.33 
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Table 3 continued: Sun location of all observations. 

Instrument 
Observation 

Number 

Center 

Date and 

Time 

(UT) 

Center 

Location 

Sun 

Zenith 

Angle 

(degrees) 

Sun 

Azimuth 

Angle 

(degrees) 

MUSCOX 20 
7/19/2008 

03:02:58.54 

68
o
43’39.68” N 

49
o
30’14.26” W 

89.85 355.01 

MUSCOX 21 
7/19/2008 

03:09:07.54 

68
o
44’19.68” N 

49
o
30’16.12” W 

89.88 356.45 

MUSCOX 22 
7/19/2008 

03:12:17.04 

68
o
44’49.50” N 

49
o
30’2.56” W 

89.89 357.19 

MUSCOX 23 
7/19/2008 

03:15:17.04 

68
o
44’59.69” N 

49
o
30’16.87” W 

89.89 357.89 

MUSCOX 24 
7/19/2008 

04:25:42.92 

69
o
14’41.97” N 

51
o
3’45.48” W 

89.02 12.88 

MUSCOX 25 
7/19/2008 

04:26:41.41 

69
o
14’26.21” N 

51
o
3’45.46” W 

89.00 13.10 

MUSCOX 26 
7/19/2008 

04:28:27.64 

69
o
14’28.77” N 

51
o
3’39.37” W 

88.97 13.52 

Landsat 1 
7/3/2008 

11:44:22.28 

68
o
16’53.04” N 

49
o
48’39.24” W 

45.79 167.36 

Landsat 2 
7/19/2008 

11:44:10.34 

68
o
17’42.36” N 

49
o
47’20.76” W 

48.03 166.97 

 

Night is a relative term when applied to locations at extreme latitudes, such as 

Greenland, during the summer, because the sun does not set.  However, it is important 

to note that all of the MUSCOX observations took place when the sun was extremely 

low in the sky and the Landsat observations took place closer to mid day.  Scheduling 

the MUSCOX missions for this time of day has the benefit of avoiding the possibility 

of imaging sun glint from the ice and water and also prevented the UAV from 

imaging its own shadow, and may have been a logistical necessity because of allowed 

flight plans.  However, this attribute of the data also causes problems for lake depth 

calculations, as will be discussed shortly. 
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3. Refraction 

The refraction of light through the air/water interface will also influence the 

path the light takes through the water.  Snell’s law, shown as equation (4), gives the 

angle of transmitted light through an interface, θt, for any angle of incident light, θo.  

In this equation, N1 is the real index of refraction of the initial medium and N2 is the 

index of refraction of the medium that the light moves into.  Thus, in the case of light 

passing from air to water, the index of refraction of air would be N1 and the index of 

refraction of water would be N2.  The angles are measured relative to a line which is 

perpendicular to the interface. 

21

sinsin

NN

ot 
       (4) 

The index of refraction of air is approximately 1 for all wavelengths and the 

index of refraction of water is approximately 1.33 for all wavelengths (Petty, 2006).  

Figure 5 shows the angle of transmittance for angles of incidence between 0 and 90
o
 

for the air to water and water to air interfaces.  As figure 6 indicates, Snell’s law is 

invalid for the water to air interface for angles of incidence above 48.75
o
.  If light 

reaches a water to air interface at an angle of incidence above 48.75
o
, all of the light 

will be reflected inside the water instead of changing mediums to the air. 
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Figure 6: Refraction of light through air to water and water to air interfaces. 

 

Using this information, figure 7 shows the path the light takes from the sun, 

through a glacial lake, to the Landsat satellite.  This analysis assumes that the lake 

bottom is a Lambertian reflector and that for each pixel the satellite receives only 

light from that pixel which is reflected directly upward, meaning that refraction does 

not occur on the light’s journey from the lake bottom to the satellite.  Though it is not 

strictly true, the Lambertian reflector assumption is necessary because no information 

about the angle of the lake bottom compared to the horizontal is available.  With the 

benefit of multiple channels of data it may be possible to partially separate decreases 

in signal due to attenuation by the water from decreases in signal due to anisotropic 

reflection by the lake bottom, but that effort will not be undertaken in this analysis. 
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Figure 7: Refraction for Landsat observations. 

 

Refraction in the case of the MUSCOX observations is complicated by the 

fact that the height of the UAV is low enough that it is not valid to assume that the 

light which reaches the instrument has a 0
o
 incidence angle at the water to air 

interface.  Instead, the path is dependent upon the view angle of the UAV, as 

summarized for a single pixel in figure 8.  As with the Landsat observations, the lake 

bottom will be assumed to be a Lambertian reflector. 

x 

o

t

txs cos

s 
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Figure 8: Refraction for MUSCOX observations. 

 

 

4. Spatial Resolution 

The spatial resolution of each pixel in the Landsat data is well known because 

the instrument has known optical characteristics and orbits at a nearly constant 

altitude.  However, in the MUSCOX data, spatial resolution varies based on the 

height of the aircraft and its roll and pitch angles.  Additionally, the angular resolution 

of the instrument was unknown and so had to be inferred based on measurements of 

the runway.  In situ measurements placed the width of the center stripe of the runway 

at 46 cm.  As shown in figure 9, which gives first several lines of data of data set 1, a 

runway image, this region is seven pixels wide, meaning that these ground pixel have 

x 

1o

1t

11 cos txs 

s1 

2o

2t

22 cos oxs 
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widths of 6.57 cm. 

 

 

Figure 9: Derivation of the MUSCOX spatial resolution. 

 

At the time of this observation the height of the UAV was 265.03 m, the roll angle 

was -1.736
o
, and the pitch angle was 4.647

o
.  Additionally, since the center stripe 

pixels are not at the center of the image, there is a slight angular offset of 1.82 

degrees from nadir in the cross track direction.  Figure 10 shows the direction of each 

of these angular offsets. 

7 pixels 
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Figure 10: Angular offsets of the UAV. 

 

The range from the imager to the ground pixel is calculated using equation (5), where 

δ is the angular offset of each pixel, φ is the roll angle, and θ is the pitch angle.  The 

yaw angle of the aircraft is not included in this formulation because yaw does not 

influence the range from the instrument to the ground pixels.  Equation (5) gives the 

unit 3b̂  vector in terms of a coordinate frame which is attached to the UAV but does 

not rotate.  Multiplying this vector by a factor which makes the nadir component 

equal the height of the UAV then calculating the magnitude of the vector gives the 

slant range to the pixel.  Thus, the range from the UAV to the stripe pixels in the 

image above is 266.405 meters. 
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The final step is to apply equation (6), where X’ is the size of the ground pixel, s is 

the path length, and θr is the angular resolution.  Using the 6.57 cm width of the 

ground pixels and the path length found above reveals that the angular resolution of 

1b̂

2b̂

+ roll          
+ yaw          

+ pitch            

3b̂

2b̂

Pixel Number: 320                        ← 1        

3b̂

δmax = 12.2o             
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each pixel is 0.007067
o
. 

 rsX tan2        (6) 

5. Anisotropic Reflection 

All ground types will be assumed as Lambertian reflectors for the majority of 

the analysis.  This is necessary because ground type categorization begins without a 

priori information about the locations of the ground types in the image.  Additionally, 

this study is not attempting to derive the albedo of the various ground types, only to 

distinguish them from one another.  Therefore, the bidirectional reflectance 

distribution functions (BRDFs) of the likely ground types will only be considered if 

ambiguities in the categorization results are discovered or for correction factors in the 

calculation of the depth of supraglacial lakes. 

Painter and Dozier (2006) published their observations of the BRDF of snow 

at two observation wavelengths and snow grain sizes using an Automated Spectro-

Goniometer on February 23, 2001 at Mammoth Lakes, CA.  Their study indicates that 

the BRDF of snow depends strongly upon the observation wavelength and the grain 

size of the snow, and that snow reflects light most strongly in the forward direction, 

but a non-negligible amount of light is also reflected in a fashion which is better 

described as Lambertian. 

Greuell and de Ruyter de Wildt (1999) performed reflectivity measurements 

on melting glacier ice in Switzerland.  Their observations indicate that the BRDF of 

melting glacier ice is much more specular than the BRDF of snow. 
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According to Petty (2006), smooth water experiences specular reflection.  

Thus, unless the surface of the water is disturbed by wind, the angle of the reflected 

light will equal the angle of the incident light.  Another consideration is the 

reflectivity of water at grazing angles, which is particularly important considering the 

extreme solar zenith angles of the MUSCOX observations.  The reflectivity of an 

interface at various angles of incidence is given by the Fresnel relations, reproduced 

as equations (7), (8), and (9) for the case of unpolarized light, such as the sun, where r 

is the reflectivity.  These equations are reproduced from Petty (2006). 
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The results of the Fresnel relations for the air/water interface are given in 

figure 11. 



www.manaraa.com

  26 

   

   

   

   

   

 

Figure 11: Fresnel relations of the air/water interface with the reflectivity for the 

MUSCOX observations highlighted. 

 

Figure 11 highlights a significant issue with the MUSCOX lake observations 

if any attempt to determine the water depth is to be made: depending on the 

observation, only 3.99 to 18.32% of the light which is incident on water will actually 

penetrate the surface.  In this situation, the levels of light which reach the water after 

being scattered at least once by the atmosphere are no longer negligible compared to 

the amount of light which is not scattered and must be taken into account in order to 

obtain an accurate result.  No methods of accounting for the effects of skylight in the 

calculation of water depth could be located, so instead the calculations of water depth 

in the MUSCOX data will assume that all light originates from a zenith angle of zero 

degrees which the knowledge that the resulting depths will be slightly too large. 

6. Summary of Preprocessing and Sources of Error 

Table 4 summarizes the preprocessing undertaken for this analysis and the 

remaining sources of uncertainty. 
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Table 4: Error sources and likely impacts. 

Consideration Mitigation Remaining Error Impact 

 

Atmospheric 

Attenuation 

 

Ignored Negligible 

 

Aerosol Attenuation 

 

Ignored Negligible 

 

Sun Location 

 

Calculated for each 

data set 

Pixel to pixel differences 

ignored, but are negligible 

Refraction 
Calculated for each 

pixel 

Negligible differences due to 

index of refraction varying as a 

function of wavelength 

Spatial Resolution 
Calculated for each 

pixel 

Possible errors due to ground 

height differences from datum 

Reflection 
BRDFs for likely 

ground types located 

Uncertainties possible due to 

variable snow grain size, not 

melting, or mismatch of solar 

zenith angles with observations 

Scattering by 

Atmosphere 
Ignored 

Likely overestimation of lake 

depth in MUSCOX 

observations 

Difference between 

height of observed 

locations and datum 

Ignored 
Possible large under and over 

estimation of pixel area 

 

B. Detection of Supraglacial Lakes 

Figure 12 shows a filled supraglacial lake as imaged by Landsat 7 and 

MUSCOX. 
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Figure 12: Mosaic of MUSCOX and Landsat 7 filled lake data. 

 

While it is a simple matter for a person to look at an image such as figure 12 

and immediately recognize some of the features in it, training a computer to do the 

same is a much more involved task.  Several algorithms and methods have been 

developed to determine ground types in remote sensing data, all of which start with 

the reflective properties of the possible ground types.  This project will use three 

methods of ground type detection and compare the results. 

 

9 
10 

11, 16 
17 
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1. Spectral Signatures 

All ground classification methods require some a priori knowledge of the 

spectral properties of the ground types in the image.  The data used in this project is 

most likely to contain the following ground types: snow, ice, dirt, clear water, dirty 

water, and dirty ice.  The spectral signatures of snow, ice, water, and inorganic 

materials have been measured as described in Satterwhite et. al. (2003).  All of the 

measurements in this study were taken by viewing samples in the nadir direction.  

The results of this study indicate that glacial ice is highly reflective in the visible 

wavelengths, but dirty ice looses its reflectivity.  Fresh and old snow are more 

reflective and have more constant reflectivity over visible wavelengths.  Meanwhile, 

inorganic materials such as scree left by avalanches or glaciers are less reflective and 

that reflectivity is highly dependent on the amount of sediment present.  The 

reflectivity of water is, of course, entirely dependent upon the water depth and the 

Fresnel equations discussed above. 

2. ISODATA 

Iterative Self-Organizing Data Analysis Technique, or ISODATA, is an 

unsupervised iterative clustering algorithm, which attempts to create subsets of data 

based on sample means (Tou and Gonzalez, 1974).  In brief, the ISODATA algorithm 

takes the samples of a data set and arranges each sample according to its proximity to 

a number of cluster centers.  In the case of remotely sensed image data, each pixel is 

an individual sample and the term “proximity” refers to the similarity of the 

magnitude of each spectral band to the cluster center, not to the locations of the 
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pixels.  By comparing the mean and standard deviation of the distance of each sample 

from its cluster center to threshold parameters, the number of cluster centers and 

“locations” of the cluster centers in the spectral domain are adjusted.  The procedure 

is repeated for a set number of iterations and results in a number of subsets of the 

original data set, grouped by similar spectral characteristics.  Figure 13 shows an 

operational flow chart of the ISODATA algorithm.  For this analysis, the ISODATA 

tool built in to ENVI will be used. 
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Figure 13: Flow chart of the ISODATA algorithm. 

 

Figure 14 shows the results of applying the ISODATA algorithm to a runway 

image, size by side with the original image in grayscale.  The colors in this image 

correspond to the five different features that the algorithm isolated. 

Input: Desired number of clusters (ground types). 

          Minimum allowed number of clusters. 

          Minimum number of pixels in a cluster. 

          Allowed standard deviation of the clusters. 

          Maximum number of iterations. 

Assume centers for each cluster. 

•Subset the data based on which cluster center it 

best resembles. 

•Discard any clusters with less than the 

minimum number of pixels. 

•Update the cluster centers to the average of the 

data in the cluster. 

•Compute the average and standard deviation of 

the difference between the cluster center and the 

data in the cluster. 

Has the input number of iterations been reached? 

Yes. 

Update the number of data 

clusters based on empirical 

properties. 

No. 

Output the data classes. 
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Figure 14: Results of ISODATA on a runway image. 

 

By comparing the two runway images, it is possible to infer that the red and 

yellow pixels are paint, though the locations in yellow are slightly darker than the 

areas in red.  The light blue pixels are primarily runway.  The green pixels are the 

slightly darker area beside the runway, although some of the darker regions of the 

runway are also labeled in this same data class.  The dark blue pixels are runway or 

areas in shadow.  The average returns from each data class are given in figure 15. 
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Figure 15: Spectral returns from each data class isolated by ISODATA. 

 

As figure 15 indicates, the data classes labeled in red and yellow have very 

similar signatures, as do the data classes labeled in green, light blue, and dark blue.  

With additional tuning of the input parameters to the ISODATA algorithm, it may be 

possible to refine the classifications and make them more accurate.  The quantitative 

results from the ISODATA algorithm are given in table 5. 

Table 5: Results of ISODATA. 

Class 

Number 

of 

Pixels 

Percent 

of 

Total 

Likely 

Ground 

Type 

Total 

Number 

of Pixels 

for 

Ground 

Type 

Percent 

of 

Total 

Red 19285 3.18% 
Paint 36989 6.11% 

Yellow 17704 2.92% 

Light 

Blue 
254988 42.09% 

Runway 361170 59.62% 
Dark 

Blue 
106182 17.53% 

Green 207601 34.27% 
Beside 

Runway 
207601 34.27% 
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3. Adaptive Boosting 

Adaptive boosting is a machine-learning algorithm, which combines many 

weak classifiers into a single strong classifier.  The algorithm is described in detail in 

Freund and Schapire (1997) and Nishii and Eguchi (2008).  In general terms, when 

applied to remote sensing, adaptive boosting is a supervised classifier which makes a 

series of guesses about the ground type of the pixels in the image based on given 

parameters, in this case, the intensity of the light in each channel.  After each guess, 

the algorithm re-calculates the weight of the input pixels based on whether or not the 

weak classifier was correct in its guess.  Pixels which are incorrectly classified are 

given higher weights for the next iteration.  After several iterations, the algorithm 

combines all of its guesses into a single strong classifier, which is more accurate than 

any of the weak classifiers alone.  Figure 16 shows an operational flow chart of the 

adaptive boosting algorithm summarized from Freund and Schapire (1997).  For this 

analysis, the adaptive boosting algorithm was hand coded using IDL. 
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Figure 16: Flow chart of the adaptive boosting algorithm. 

 

The results of adaptive boosting on the simple case of separating the painted 

stripes on a runway from the asphalt and surrounding ground are given in figure 17.  

The first image shows the original image and highlights the training data given to the 

adaptive boosting algorithm.  In all three images, red indicates the stripes painted on 

the runway and blue indicates the runway surface and surrounding ground.  The 

second image shows the spectral information from the training data, averaged by 

Input: Pixels with specified classes. 

          Equal weight for all pixels. 

          Number of iterations. 

Locate a threshold in a single 

band which leads to the highest 

sum of number of correctly 

classified pixels times their 

weights. 

Has the input number of iterations 

been reached? 

Yes. 

Output all thresholds 

as a hypothesis for use 

in classifying the 

entire data set. 

No. 

Increase the weight of 

incorrectly classified pixels 

and decrease the weight of 

correctly classified pixels.  

Store previous threshold(s). 
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pixel, and the threshold results from the adaptive boosting algorithm.  In this case, the 

algorithm determined that all of the training data could be accurately classified by 

using a single threshold: all pixels with normalized returns higher than 0.065 in the 

468.41 nm band are paint pixels, the rest are not paint pixels. 

 

Figure 17: Results of adaptive boosting on a runway image. 

 

The next step in the analysis of the runway image using adaptive boosting is 

to take the pixels that were determined not to contain paint and separate them based 

on whether they are runway or ground beside the runway.  Figure 18 shows the 

results of this effort. 
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Figure 18: Adaptive boosting to separate road from dirt on a runway image. 

 

A qualitative analysis of these results indicates that adaptive boosting was not 

completely successful at separating runway pixels from not runway pixels, though it 

appears to be approximately as accurate as the ISODATA method.  Also, like the 

ISODATA method, these results could be improved by making adjustments to the 

inputs to the algorithm.  In the case of adaptive boosting, the best adjustment would 

be to choose pixels that were previously misclassified when the model was applied 
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and ensure that they are used as teaching data for the creation of the model.  The 

number of pixels assigned to each class using adaptive boosting is given in table 6. 

Table 6: Results of adaptive boosting. 

Class 
Number of 

Pixels 

Percent of 

Total Area 

Paint 37209 6.14% 

Runway 225727 37.26% 

Not Runway 342824 56.59% 

 

4. Maximum Likelihood 

The maximum likelihood algorithm is a supervised classification algorithm.  It 

is described in full in Richards and Jia (2006).  In short, the maximum likelihood 

algorithm classifies data by calculating the probability that an unclassified pixel 

belongs to one of the training data sets by using equation (10).  In this equation, jg  is 

called the discriminant function, j is the data class, x


 is the spectral data of each 

individual pixel in vector form, )( jp   is the a priori probability that a pixel belongs 

to class j , j  is the covariance matrix of the data in class j, and mj is the average of 

each band of data in class j.  The discriminate function for each pixel is calculated for 

each data class and the pixels are classified with the class which gives the largest 

discriminant function.  For this analysis, the maximum likelihood facilities built into 

ENVI will be used. 

 )()(
2

1
ln

2

1
)(ln)( 1

jj

t

jjjj mxmxpxg   
   (10) 

Figure 19 gives an operational flow chart of the maximum likelihood 

algorithm. 
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Figure 19: Flow chart of the maximum likelihood algorithm. 

 

Figure 20 shows the results of applying maximum likelihood to the runway 

image. 

 

Figure 20: Results of classification of a runway image with maximum likelihood. 

 

Inputs: Pixels with specified classes. 

             

For each pixel, calculate the discriminant 

function for all data classes based on the 

training data. 

Classify each pixel in the data class 

which maximizes the discriminant 

function. 
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Like ISODATA and adaptive boosting, the maximum likelihood method does 

not accurately distinguish the runway from the ground beside the runway.  Table 7 

summarizes the results. 

Table 7: Results of maximum likelihood. 

Class Number of Pixels Percent of Total Area 

Paint 37805 6.24% 

Runway 288990 47.71% 

Not Runway 278965 46.05% 

 

Maximum likelihood does have one significant advantage over the other two 

methods: it is a simple matter to add more pixels to the training data.  The maximum 

likelihood algorithm with additional training data was used to create figure 21.  

Comparison of figures 20 and 21 shows that additional training data is important in 

the successful use of the maximum likelihood algorithm. 

 

Figure 21: Runway classification using maximum likelihood with additional training data. 
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The quantitative results of using maximum likelihood with additional training 

data are given in table 8. 

Table 8: Results of maximum likelihood with additional training data. 

Class Number of Pixels Percent of Total Area 

Paint 36858 6.08% 

Runway 321744 53.11% 

Not Runway 247158 40.80% 

 

5. Comparison of Classification Algorithms 

All three algorithms give similar estimates in their classifications of the 

different ground types.  This is particularly significant in the separation of runway 

pixels from pixels which are not runway.  Figure 22 gives another view of the 

runway, as taken by a video camera onboard the UAV during the flights.  From this 

image, it is immediately clear that the material beside the runway is not very different 

from the material that makes up the runway itself; they may even be identical.  It is 

possible that the boundaries of the runway are only obvious because the stripes 

painted on the runway make them so.  It is therefore impressive that all three 

algorithms, which only examine the data on a pixel by pixel basis, were able to make 

some distinction between the two very similar ground types. 
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Figure 22: The runway as imaged by an onboard video camera. 

 

For comparison, figure 23 shows a low fidelity hand analysis of the same 

runway image, estimating the percent of the image occupied by the three ground 

types. 
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Figure 23: Hand analysis of areas in the runway image. 

 

Table 9 compares the results of the hand analysis to the three ground 

categorization algorithms. 

 

22.2 cm 

2.7 cm 

4.6 cm 

4.3 cm 

0.5 cm 

0.05 cm 

0.1 cm 
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Table 9: Comparison of hand analysis of the runway image to the ground classification 

algorithm results. 

Ground 

Type 

Percent of Total Area 

Hand 

Analysis 
ISODATA 

Adaptive 

Boosting 

Maximum 

Likelihood 

Paint 7.12 % 6.11 % 6.14 % 6.08 % 

Runway 51.58 % 59.62 % 37.26 % 53.11 % 

Not Runway 41.30 % 34.27 % 56.59 % 40.80 % 

 

Consistent with the qualitative analysis above, these results indicate that all 

three ground classification results were very accurate in separating paint pixels from 

non-paint pixels.  They were less successful in their attempts to separate the runway 

pixels to the pixels which were beside the runway, though maximum likelihood was 

the most accurate. 

 

C. Determination of Lake Depth 

Determination of lake depth will make use of two similar methods.  The first 

is the Beer-Lambert-Bouguer law, commonly shortened to Beer’s law, which is given 

as equation (11) where x is the depth of the water, t is the transmittance, I(x) is the 

intensity at depth x, Io is the intensity at the surface, λ is the wavelength of the light, 

and ni is the imaginary component of the index of refraction of the water, which is a 

function of wavelength. 

 











 xn

I

xI
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The basic radiative transfer model used for lake depth measurements is shown 

in figure 24.  The equations in this figure must be adjusted if the path of light through 
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the water to the instrument contains any slant angle. 

 

Figure 24: Schematic of lake depth measurements. 

 

An alternative method of calculating lake depth based on two wavelengths is 

described in Lyzenga (1978) and will be denoted the ratio method for the remainder 

of this paper.  This method is based on the constraint that the two wavelength bands 

used in the calculation must have a constant ratio of reflectances for all bottom types 

in a given scene.  Since the only expected bottom type in the supraglacial lake data is 

ice, this constraint is ideally already fulfilled.  Equations (12), (13), and (14) give the 

ratio method for determining lake depth.  In these equations, subscript 1 refers to 

band 1, subscript 2 refers to band 2, r is reflectivity, β is the absorption coefficient of 

water, k is a constant which accounts for solar radiance, transmission through the 

atmosphere, and refraction at the surface of the water, f is a geometric factor which 

accounts for the slant angle through the water, I is observed radiance of each pixel, 

x 

Io = I↓ 
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and Is is the observed radiance of water which is optically deep, meaning that it is 

deeper than approximately 40 meters. 
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The input parameters of radiance from optically deep water bare some 

discussion.  This term is intended to correct for light which is scattered back to the 

instrument by the water itself instead of being reflected by the lake bottom.  However, 

supraglacial lakes do not typically reach depths of 40 meters, and, since the 

MUSCOX images are very limited in area, they do not contain any open water data.  

Additionally, the Landsat images used in this analysis do not contain data which 

stretches far enough into the ocean to be confidently called optically deep, and it is 

the judgment of this analyst that looking for this data in Landsat images which are 

adjacent in either time or space would incur unacceptable errors due to differences in 

sun angle and atmospheric conditions.  Therefore, the deep water radiance terms will 

be set to zero in all calculations with the knowledge that some loss of accuracy will 

result. 

The process of solving for the lake depth in both equations is hindered by 

several unknowns.  The first unknown is the downwelling radiance.  The MUSCOX 

and Landsat data do not give downwelling radiance explicitly, so the value will have 
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to be inferred.  One method of inferring the downwelling radiance is to use a 

theoretical model of the radiance of the sun based on Planck’s law and correct these 

values based on the distance between the sun and the Earth and the probable 

attenuation due to the atmosphere.  However, this method has two significant sources 

of error.  First, the sun closely approximates a blackbody but is not exact.  Second, 

the attenuation through the atmosphere varies based on several parameters with may 

not be accounted for in any one empirical or analytical model.  Since these two 

sources of uncertainty have the potential to create very large errors in the depth 

calculation results, the blackbody estimate of the sun’s radiation will not be used for 

the lake depth calculations. 

Another method of determining the downwelling radiance is to make 

estimates based on other pixels in the image, either by choosing bright pixels and 

assuming that the reflectivity at that location is approximately one or by choosing 

pixels with known ground types and using the known reflectivity to calculate the 

downwelling radiance.  This method has the advantage of eliminating the need to 

consider the atmosphere in the calculations because it is generally valid to assume 

that all pixels within a small area of the same image have the same attenuation due to 

the atmosphere.  A modification of this method that will be used to infer the 

downwelling radiation, as discussed below. 

The second source of uncertainty in the lake depth calculations is the 

reflectivity of the lake bottom.  Since there is no available data about the type of 

surface on the lake bottoms in these images, the reflectivity will have to be estimated 
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based on the reflectivity of the pixels in the scene, with the assumption that the 

reflectivity of the lake bottom is constant throughout the lake.  This assumption may 

not be valid because of the possible presence of silt on the lake bottoms. 

Following the technique of Sneed and Hamilton (2007), the unknown 

parameters of downwelling radiation and lake bottom reflectivity will be combined 

into a single variable in this analysis.  Again assuming that lake bottom reflectivity is 

constant throughout the lake, pixels which are visually judged to contain very shallow 

water will be chosen to represent the downwelling radiance times the lake bottom 

reflectivity. 

Lastly, the attenuation coefficient or imaginary coefficient of refraction of 

water are required in order to use both methods for calculating lake depth.  This is a 

property of water which is dependent upon the salinity of the water and the presence 

of suspended particles.  For this analysis, the water in the supraglacial lakes will be 

assumed to be fresh and have no suspended sediment.  The absorption coefficient of 

pure water has been the subject of several investigations, such as that described in 

Smith and Baker (1981), which gives the absorption and backscattering coefficients 

of clear water at wavelengths between 200 and 800 nm.  According to Smith and 

Baker (1981), total attenuation coefficient is related to the absorption and 

backscattering coefficients through equation (15), where a is the absorption 

coefficient and b is the backscatter coefficient.  The coefficient of 0.5 applied to the 

backscattering coefficient represents Rayleigh scattering, so additional attenuation 

can occur depending on the properties of the water.  However, without in situ data of 
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the lake depth, the lake bottom reflectance, and the properties of any suspended 

particles, the true attenuation coefficient of the water will remain a source of 

uncertainty. 

ba 5.0        (15) 

Since the observation band wavelengths extend as high as 2346 nm (with the 

longest center wavelength being 2205 nm), complex index of refraction data from 

Petty (2006) will be used to augment the data set from Smith and Baker (1981).  The 

resulting absorption coefficients for the observation bands are shown in figure 25. 

 

Figure 25: Absorption coefficient of water at the observation wavelengths. 

 

D. Detection of Drained Supraglacial Lakes 

A search of the literature produced few methods of detecting drained 

supraglacial lakes.  Box and Ski (2007) resorted to a manual examination of a small 

area of the Greenland Ice Sheet in MODIS imagery.  An identical change detection 
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method will be used as a starting point for locating drained glacial lakes, and then the 

lake location information will be used to attempt to find spectral signatures or 

textures unique to drained supraglacial lakes.  These efforts will be discussed in detail 

in section VB.  The changes during the month of July in the two drained lakes 

observed during the MUSCOX expedition are shown in figure 26, as imaged by 

Landsat 7. 

 

Figure 26: Evolution of two supraglacial lakes in July, 2008. 

 

Many sections of the region shown in figure 26 were imaged during the 

MUSCOX mission, as shown in a mosaic in figure 27. 

July 3, 2008 July 19, 2008 July 28, 2008 
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Figure 27: Mosaic of MUSCOX and Landsat dry lake data. 

 

Using the data from image 20 as representative of a dry lake and data from image 

21 as representative of unaltered ice, figure 28 shows the reflectivities of the two ground 

types. 

 

Figure 28: Returns of dry lake and bare ice. 
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E. Great Circle Distance 

In cases where the distance between two pixels must be calculated, the great 

circle method will be used to create a result which accounts for the curvature of the 

Earth, though it neglects the flattening of the planet at the poles.  The formula used to 

determine the distance is given in equation 16, which was taken from Sinnott (1984).  

In this equation, D is the distance between two points, RE is the radius of Earth, ψ is 

latitude, γ is longitude, and subscripts 1 and 2 refer to the two locations. 
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IV. Analysis 

The following section will describe the analysis and preliminary results. 

A. Detection of Supraglacial Lakes 

The first step in the analysis is to separate lake pixels from ice pixels in the 

MUSCOX and Landsat images of filled glacial lake.  As figure 29 indicates, when 

applied to MUSCOX lake data from July 17, data set nine, the lake detection results 

from the ISODATA, adaptive boosting, and maximum likelihood algorithms are 

qualitatively similar.  For reference, the orientation of the raw image and the 

processed images is difference because the raw image was graphed by ENVI in UTM 

coordinates while the processed images were graphed in IDL using an orthographic 

coordinate frame. 
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Figure 29: Results of classification algorithms on MUSCOX lake data. 

 

Table 10 summarizes the qualitative results of the classification algorithms.  It 

is immediately obvious that the two supervised algorithms, adaptive boosting and 

maximum likelihood, match each other with far more accuracy than ISODATA 

matches either of them, but the question still remains: which algorithm most 

accurately characterizes the boundaries of the lake in the image? 

Table 10: Comparison of classification results from the three algorithms. 

Algorithm 

Number 

of 

Water 

Pixels 

Water 

Area 

(m
2
) 

Number 

of Not 

Water 

Pixels 

Not 

Water 

Area 

(m
2
) 

Water 

Area % 

Difference 

from 

ISODATA 

Not Water 

Area % 

Difference 

from 

ISODATA 

ISODATA 219422 27831.20 131618 16678.62 - - 

Adaptive 

Boosting 
179638 22786.79 171402 21723.03 19.93 % 26.27 % 

Maximum 

Likelihood 
192091 24896.49 158949 19613.33 11.13 % 16.17 % 

 

In the attempt to answer the question of which classification method is most 

accurate, a single row of data, marked in green in figure 30 has been chosen for closer 

Raw Data 
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analysis.  This row was chosen because it contains both ice and liquid water data, and 

all three algorithms disagree on the precise boundary between the two ground types. 

 

 

Figure 30: Data used for close analysis of classification algorithms. 

 

As shown in figure 31, it is the judgment of this analyst that this row of data 

contains an ice feature, a small width of shallow water, a ridge, and finally the lake.  

Figure 31 also indicates the pixels where the three classification algorithms located 

water.  The results of the ISODATA algorithm differs from the visual assessment on 

50 pixels, or 15.63% of the row, adaptive boosting differs by 111 pixels or 34.69% of 

the row, and maximum likelihood differs by 57 pixels or 17.81% of the row.  Clearly, 

though none of the algorithms is completely accurate, ISODATA and maximum 

likelihood correctly categorized significantly more of the data than adaptive boosting. 
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Figure 31: Location of actual and predicted water pixels for one row of data. 

 

In an attempt to understand why a significant amount of the data from this row 

of the image was misclassified, figure 32 depicts the spectral data, using ice and water 

data from where the visual analysis and the three categorization algorithms are in 

agreement as a basis of comparison for pixels where the different analysis methods 

are in contention.  Upon examination of figure 32, it immediately becomes clear why 

the pixels which were classified as a ridge by visual inspection were classed as water 

by the computer algorithms: the spectral data is similar in magnitude to the data 

corresponding to pure water pixels.  The ridge shows the same double peak pattern in 

the specular data as the pure ice pixels, but the lower magnitude was probably enough 

to confuse the algorithms.  The misclassification of the water pixels is more troubling, 
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because the misclassified water pixels have very similar spectral data to the known 

water pixels. 

 

Figure 32: Spectral data for comparison of correctly and incorrectly classified ice and 

water data. 

 

The most likely reason that the water pixels in question were misclassified by the 

supervised algorithms is because they were not provided with shallow water as part of 

their training data.  Figure 33 gives the results of the adaptive boosting and maximum 

likelihood algorithms with this deficiency corrected.  With the additional input data, 

adaptive boosting only differs from the visual analysis of the row of data on 4 pixels, 

or 1.25% of the data and maximum likelihood only differs from the visual analysis by 

14 pixels or 4.38% of the data.  This example demonstrates the importance of careful 

selection of input data to supervised classification algorithms, because the training 

data can influence the results dramatically.  Additionally, since the unsupervised 
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classifier ISODATA only allows modification of its results via its statistical filters, 

there is a large potential for uncorrectable errors in its results.  Therefore, ISODATA 

will be used only as a check on the results of the adaptive boosting and maximum 

likelihood algorithms and not for scientific analysis. 

 

Figure 33: Results of adaptive boosting and maximum likelihood with additional training 

data. 

 

The results of the classification analysis on all lake images are summarized in 

table 11.  This includes MUSCOX data set nine with the modified training data to the 

supervised algorithms. 
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Table 11: Summary of classification of filled lake images 

Data Set 

Water Area 

(m
2
) 

Water Area % 

Difference from 

ISODATA 

ISODATA 
Adaptive 

Boosting 

Maximum 

Likelihood 

Adaptive 

Boosting 

Maximum 

Likelihood 

MUSCOX 9 27831.20 24722.71 24896.49 11.83% 11.13% 

MUSCOX 10 166912.86 166209.33 165332.12 0.42% 0.95% 

MUSCOX 11 61644.56 73764.63 71957.43 17.90% 15.44% 

MUSCOX 16 58770.29 69429.98 69702.28 16.63% 17.02% 

MUSCOX 17 57374.089 72776.67 71994.42 23.67% 22.60% 

Landsat 1 3.93·10
6
 3.05·10

6
 4.16·10

6
 25.21% 5.69% 

Landsat 2 6.38·10
6
 4.91·10

6
 6.18·10

6
 26.04% 3.18% 

 

1. Comparison of Filled Lake Location with Landsat 

In figure 34, the MUSCOX lake areas are overlaid on the two Landsat images 

of the same lake for location comparison.  The lake locations for this figure were 

created using the maximum likelihood algorithm.  Between July 3 and July 19, the 

area in the image which is covered by water increased by 1.86·10
6
 m

2
, as observed by 

Landsat 7 and determined based on the results of the maximum likelihood algorithm.  

The five MUSCOX observations in question took place between July 17 and July 19, 

meaning that the lake boundaries in the MUSCOX images should and do coincide 

more accurately with the July 19
th

 Landsat image. 
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Figure 34: Overlaid MUSCOX and Landsat filled lake locations using maximum 

likelihood. 

 

Taking a closer look at the lake boundaries in the Landsat and MUSCOX 

images, figure 35 gives the Landsat image from July 19
th

 with the lake boundaries 

from both Landsat and MUSCOX highlighted.  The lake pixels were found using 

adaptive boosting and maximum likelihood, and the lake boundaries were found by 

searching for pixels which were classified as different ground types from their 

neighbors. 

 

Landsat 1 (7/3/2008) Landsat 2 (7/19/2008) 

Adaptive Boosting Maximum Likelihood 
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Figure 35: Boundaries of the supraglacial lake as found by adaptive boosting and 

maximum likelihood.  The Landsat image is from July 19
th

. 

 

Figure 36 gives the distribution of errors in location between the lake 

boundary pixels detected using adaptive boosting on the MUSCOX images and their 

nearest neighbor in the Landsat image detected using the same method.  The distances 

were found using the great circle calculation discussed above, which yields only 

positive distance results. 

 

Figure 36: Distribution of errors in the lake boundary locations as found using adaptive 

boosting, comparing MUSCOX to Landsat on July 19
th

. 

 

The distribution of errors in location between the lake boundary pixels found 

using maximum likelihood are shown in figure 37. 
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Figure 37: Distribution of errors in the lake boundary locations as found using maximum 

likelihood, comparing MUSCOX to Landsat on July 19
th

. 

 

Table 12 gives the mean and standard deviation of the errors in the boundaries 

of the large center lake, comparing the five MUSCOX images with liquid water to the 

Landsat image from July 3rd. 
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Table 12: Mean and standard deviation of the lake boundary locations in the MUSCOX 

images compared to the Landsat image from July 3
rd

. 

MUSCOX 

Image 
Method 

Mean 

(m) 

Standard 

Deviation 

(m) 

9 

Adaptive 

Boosting 
144.42 56.17 

Maximum 

Likelihood 
114.23 58.51 

10 

Adaptive 

Boosting 
486.64 255.32 

Maximum 

Likelihood 
360.72 79.75 

11 

Adaptive 

Boosting 
255.32 13.22 

Maximum 

Likelihood 
88.22 21.08 

16 

Adaptive 

Boosting 
136.20 28.90 

Maximum 

Likelihood 
46.87 26.19 

17 

Adaptive 

Boosting 
275.81 36.59 

Maximum 

Likelihood 
146.01 40.50 

 

Table 13 gives the mean and standard deviations of the errors in the boundary 

locations, comparing the MUSCOX images to the Landsat image from July 19
th

. 
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Table 13: Mean and standard deviation of the lake boundary locations in the MUSCOX 

images compared to the Landsat image from July 19
th

. 

MUSCOX 

Image 
Method 

Mean 

(m) 

Standard 

Deviation 

(m) 

9 

Adaptive 

Boosting 
59.58 37.85 

Maximum 

Likelihood 
49.37 35.74 

10 

Adaptive 

Boosting 
223.68 178.98 

Maximum 

Likelihood 
64.45 71.99 

11 

Adaptive 

Boosting 
32.66 15.40 

Maximum 

Likelihood 
250.85 24.18 

16 

Adaptive 

Boosting 
79.15 42.83 

Maximum 

Likelihood 
271.24 36.43 

17 

Adaptive 

Boosting 
33.88 23.64 

Maximum 

Likelihood 
231.42 38.52 

 

Comparison of tables 12 and 13 indicates that the MUSCOX images match 

slightly more accurately with the Landsat image from July 19
th

 and that the results of 

maximum likelihood are more accurate than the results of adaptive boosting except in 

the cases of data sets 11, 16, and 17, where the exact boundary between shallow water 

and bare ice is in dispute.  Additionally, though many of the errors in location seem 

unacceptably large, it is important to note that the MUSCOX data was compared to 

the center of the Landsat pixels, and with Landsat’s 30 meter resolution, an error of 

300 meters is only ten pixels in the cross or along track directions in the Landsat data 

or slightly more than seven pixels at a 45
o
 angle to the cross or along track directions.  
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In all of the analyzed images, ten pixels is a reasonable error because of the effect of 

mixed type pixels, which cause uncertainty in the true boundary between water and 

ice, and because of the possibility that the exact boundaries of the lake can change 

between observations.   

To test the hypothesis that the boundary error results will improve with 

improved spatial resolution, figure 38 shows the distribution of boundary error 

distances from MUSCOX data sets six and eleven, which overlap significantly, with 

the boundaries found using adaptive boosting and maximum likelihood.  Using 

adaptive boosting, the average error in edge location is 49.23 m and the standard 

deviation is 22.22 m.  Using maximum likelihood the average error in edge location is 

15.64 m and the standard deviation is 12.74 m.  This is significantly reduced from the 

errors calculated by comparing MUSCOX to Landsat, indicating that a significant 

part of the errors in the earlier calculation simply comes from the larger spatial 

resolution of the Landsat data, coupled with the fact that the lake boundaries are 

constantly changing. 
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Figure 38: Error in lake boundary locations using overlapping MUSCOX observations six 

and eleven. 

 

In spite of these rationales, enough error in these results remains to prove that, 

in ground type detection, none of the algorithms used are an accurate substitute for a 

visual study by a skilled analyst. 

B. Volume of Supraglacial Lakes 

As seen above, MUSCOX data set nine encompasses the northern edge of a 

supraglacial lake and has a total area of 44509.82 m
2
.  Adaptive boosting determined 

that the lake area in this image is 24722.71 m
2
 and maximum likelihood determined 

that the lake area is 24896.49 m
2
.  Calculating the water depth of each lake pixel 

requires application of the preprocessing and method algorithms above, which has the 

largest effect on the incident radiation, lake bottom reflectance, and path length used 

in the analysis. 

Incident radiation and lake bottom reflectance are both unknown physical 

properties of the scene.  With the assumption that the lake bottom reflectance is 

constant for the entire lake, the observed radiance from the very shallowest lake 
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pixels can be said to account for both incident radiation and lake bottom reflectance.  

As discussed above, this method was used successfully in an analysis of imagery of 

melt ponds on the Greenland Ice Sheet gathered by the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) as described in Sneed and 

Hamilton (2007).  For this analysis, the pixels chosen to represent shallow water will 

be judged visually.  Figure 39 shows the pixels selected to represent shallow water in 

MUSCOX data set nine and their average return for each band. 

 

Figure 39: MUSCOX data set nine with shallow water pixels highlighted and the average 

spectral signature of the shallow water pixels. 

 

 The second consideration for the calculation of lake depth is the path length 

through the water.  Ordinarily, the path length calculation would include off-vertical 

paths for both upwelling and downwelling radiance.  However, as discussed in the 

preprocessing section, data set nine was observed when the sun had a zenith angle of 

89.61
o
, which, according to the Fresnel relations of an air to water interface, means 

that only 3.99% of the light penetrated the water and the rest was reflected by the 
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surface.  As a result, the majority of the light which actually penetrates the surface of 

the water was in fact scattered at least once by the atmosphere and arrived at the air to 

water interface at a different angle from the light which traveled directly from the 

sun.  Attempting to approximate the amount of light which comes from all visible 

parts of the atmosphere, the amount of light which penetrates the air to water 

interface, and the resulting angle the light is refracted to would overly complicate the 

problem.  Therefore, for the MUSCOX data sets, the path that the light takes 

downward through the water will be assumed to be equal to the water depth.  The 

path the light takes upward through the water will not be assumed equal to the water 

depth because the angle between each detector in the imager and the nadir direction is 

known, as is the effect of refraction at the water to air interface. 

With all parameters in the depth calculation equations accounted for, the 

equations can be applied, with the results shown in figure 40, using the results of the 

maximum likelihood algorithm for the locations of the water pixels.  In this figure, 

data from channel 26 with a center wavelength of 641.21 nm was used for the 

calculation data and the method used was the unaltered Beer’s Law.  The average 

depth in this image is 1.86 m, the maximum depth is 5.65 m, and the total water 

volume is 46122.45 m
3
. 
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Figure 40: Results of depth calculation of MUSCOX data set nine using maximum 

likelihood and Beer’s Law, applied to channel 26. 

 

These results match well with the known typical depths of supraglacial lakes: 

less than approximately 10 or 20 meters (Sneed and Hamilton, 2007).  However, the 

use of a different observing channel in the calculations yields an entirely different 

result, as indicated in figure 41, which is identical to figure 40 but uses channel 16 

with a center wavelength of 545.21 nm for the calculation.  The results of this 

calculation indicate that the average depth is 3.8 m, the maximum depth is 11.26 m, 
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and the total volume is 94100.61 m
3
.  Clearly, these results cannot both be correct. 

 

Figure 41: Results of depth calculation of MUSCOX data set nine using maximum 

likelihood and Beer’s Law, applied to channel 16. 

 

The most likely reason for the discrepancy in the calculated depths is a 

wavelength dependent property of the water which was not previously accounted for.  

The most likely source of error is the presence of particles which are suspended in the 
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water, influencing the attenuation coefficient, and settled on the lake bottom, 

changing the reflectivity.  As mentioned above, no information about the properties of 

the lake bottoms, including the presence or absence of settled particles, is available, 

therefore it is impossible to separate any attenuation in signal due to water depth from 

attenuation in signal due to changes in lake bottom reflectivity.  However, the 

scattering properties of different wavelengths of light due to particles of different 

sizes are well known and can be investigated.  Toward that end, figure 41 shows the 

calculated depths for a sampling of typical water pixels at all observation 

wavelengths.  As figure 42 indicates, the largest depths are calculated using the 

smallest wavelengths and at wavelengths longer than about 700 nm the calculated 

lake depth is practically zero. 

 

Figure 42: Calculated depths at various wavelengths. 
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 Figure 43 gives the results of arbitrarily setting the depth of a single pixel to its 

average value over all wavelengths and solving for the absorption coefficient with the 

actual absorption coefficient of clear water overlaid.  It should be noted that based on 

this figure and others, the MUSCOX data gathered at wavelengths above 

approximately 750 nm is so low that it should not and will not be used for depth 

calculations.  Figure 43 indicates that the calculated attenuation coefficient is higher 

than the actual attenuation coefficient at short wavelengths and lower than the actual 

attenuation coefficient at longer wavelengths. 

 

Figure 43: Calculated attenuation coefficient based on a constant lake depth and the actual 

attenuation coefficient. 

 

A similar analysis on the other input to the depth calculations, the incident 

radiation and bottom reflectivity term, is shown in figure 44.  This figure was created 
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by assuming an arbitrary constant depth and calculating the incident radiation times 

the bottom reflectivity using the published attenuation coefficient.  These results 

indicate that, while not identical, the calculated and actual incident radiation and 

reflectivity term are very similar at wavelengths below 575 nm.  Above 575 nm, the 

calculated term increases unrealistically, most likely because of data which is 

unreliable because of low light levels at long wavelengths.  These results indicate that 

channels above 575 nm should not be used in the calculation.  This also hints at the 

possibility that the deep water pixels may have lower bottom reflectivities than 

shallow water pixels, since the observed and actual reflectance time incident radiation 

are more similar at short wavelengths, but this cannot be determined with certainty 

without knowing the actual water depth. 

 

Figure 44: Calculated incident radiation times bottom reflectivity using a constant water 

depth. 
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The fact that the calculated attenuation coefficient is lower than the actual 

attenuation at some wavelengths is contrary to common sense, which would indicate 

that the addition of suspended particles to a medium could not reduce the attenuation 

coefficient of the medium.  Several factors combine to create an explanation for this 

effect.  The first factor is the incoming radiation, which, as discussed previously, 

must have been scattered at least once by the atmosphere in order to reach the lake 

surface at an angle which allows it to change mediums.  Rayleigh scattering is the 

primary scattering mechanism in the atmosphere because air molecules are much 

smaller than the wavelength of light in the visible regime.  This scattering mechanism 

is wavelength dependent, preferentially scattering light with shorter wavelengths.  

Therefore, the light which penetrates the surface of the water will be primarily at the 

blue end of the spectrum.  Additionally, water preferentially absorbs light with longer 

wavelengths, meaning that the signal in the longer wavelength channels is rapidly 

diminished when traveling through the water.  These two properties of light manifest 

themselves in the data with extremely low signal levels in all channels at 

approximately 700 nm and above.  Therefore, these long wavelength channels should 

not be used for depth calculations.  In the case of observations where the observing 

channel has a wavelength of less than 700 nm but the calculated depth is still 

unreasonably low, the most likely explanation is the presence of suspended sediments 

or perhaps floating ice crystals which are of such a size or have optical properties 

which would cause the light to be reflected back to the instrument before reaching the 

lake bottom.  This is also consistent with the properties of Rayleigh scattering which 
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scatters light approximately equally in the forward and backward directions. 

Operating now with the hypothesis that Rayleigh scattering is occurring for 

long observation wavelengths above 700 nm, what is the explanation for the vastly 

larger calculated depths at the short observation wavelengths?  Assuming that the 

radius of the suspected suspended particles is constant and much smaller than 700 

nm, decreasing the observation wavelength will change the scattering properties 

because the wavelength and particle radius will become more similar in magnitude.  

This means that there is a potential for a transition from Rayleigh scattering at long 

wavelengths to scattering which is described by Mie theory for the short wavelength 

observation bands.  This is significant because Mie theory describes scattering 

preferentially in the forward direction, meaning that the attenuation coefficient used 

in the depth calculations could be overestimating the amount of radiation which is 

scattered out of the path (Petty, 2006).  Additionally, Mie theory describes the 

extinction efficiency of spheres based on the ratio of the particle size to the 

wavelength.  For a constant and small particle size, near the transition between 

scattering described by Rayleigh and Mie theories, decreasing the wavelength 

increases the extinction efficiency.  This matches exactly with the attenuation 

coefficient results shown in figure 42, where the calculated attenuation coefficient is 

lower than the attenuation coefficient of pure water at long wavelengths and higher 

than the attenuation coefficient of pure water at short wavelengths.  If the hypothesis 

that suspended particles in the lake are causing Mie theory scattering is correct, then 

at the short observation wavelengths for any given water depth the signal received by 
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the instrument will be stronger than it would be otherwise because of increased 

forward scattering, but will be subject to increased extinction efficiency which will 

decrease the signal strength.  Which of these properties dominates is a question which 

cannot be answered without additional knowledge of the scatterers themselves. 

What, then, is the correct observing channel to use in the calculations to gain 

the most accurate depth results?  Unfortunately, lacking both measurements of the 

actual lake depth at the time of the observations and information about the presence, 

absence, concentration, or size of any suspended particles in the lake, it is impossible 

to determine with certainty which observing wavelengths give the most accurate 

depths or to account for the additional scattering effects of the suspected suspended 

particles.  Instead, this analysis will attempt to solve the problem by using the 

observing channel which the hypothesis described above indicates should give the 

most accurate results.  Therefore, Beer’s law will be applied to two separate 

observation channels: a short wavelength band which could have increased forward 

scattering but also increased extinction due to particles which are of comparable size 

to the wavelength, and a long wavelength band which could have lower extinction 

efficiency and more closely resemble Rayleigh scattering.  However, consideration 

should also be given to the planned comparisons with Landsat data, which has a more 

coarse spectral resolution.  Thus, MUSCOX channel nine at 478.01 nm, which 

corresponds to the center of Landsat channel one at 441 to 514 nm and MUSCOX 

channel 18 at 564.41 nm, which corresponds to the center of Landsat channel two at 

519 to 601 nm, will be used for this analysis.  However, as mentioned, the accuracy 
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of these results cannot be confirmed without knowing the real lake depths, therefore, 

while the results in this analysis will be internally comparable, they cannot be taken 

as representative of the actual lake properties.  Additionally, comparison of these 

results with the results of other studies, (McMillan et. al., 2007) and (Sneed and 

Hamilton, 2006), indicates that the depths calculated using channel nine are a gross 

overestimation of the actual depths of lakes on the Greenland ice shelf. 

Figure 45 gives the results of the depth calculation using channel nine.  The 

maximum calculated depth in this image is 28.83 m, the average depth is 7.57 m, and 

the total volume is 178253.06 m
3
. 
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Figure 45: Results of Beer’s Law calculation for water depth, using MUSCOX channel 

nine. 

 

The results of the depth calculation using channel 18 are shown in figure 46.  

These results indicate that the maximum depth in the image is 10.15 m, the average 

depth is 3.54 m, and the total volume is 87810.79 m
3
. 
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Figure 46: Results of Beer’s Law calculation for water depth, using MUSCOX channel 18. 

 

Figure 47 shows the results of calculating the lake depth using the ratio 

method calculated using MUSCOX channels nine and eighteen, which correspond to 

the center of Landsat channels one and two.  The ratio method indicates that the 

maximum depth in the image is 7.63 m and the average depth is 2.39 m, for a total 
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volume of 58892.04 m
3
.  Clearly, the lake depth values here are quite different from 

the results from using Beer’s Law on a short wavelength channel and far more similar 

to Beer’s Law on a long wavelength channel.  Additionally, assuming that the lake 

bottom reflectance equivalency assumption in the ratio method derivation has not 

been violated, the results of the ratio method are likely to be more accurate than the 

results from the unaltered Beer’s law, because this method has the additional benefit 

of being unaffected by changes to water quality as long as the relative attenuation 

coefficient between the two calculation bands is constant.  The possibility that these 

results are more accurate is also supported by comparison with the published results 

from other studies, which indicate that the maximum lake depth should not be deeper 

than 10 or 20 meters. 
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Figure 47: Results of lake depth calculations using the ratio method with channels nine and 

eighteen. 

 

An additional analysis of the Beer’s law and ratio methods of determining 

lake depth reveals that the ratio method is much more stable.  Using a sample of 

typical water pixels from data set nine, applying Beer’s Law to channel nine, the 

average of the depth results decreases by 4.76% when the attenuation coefficient is 
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increased by 5% and the average depth increases by 11.06% when the incident 

radiation and bottom reflectance term is increased by 5%.  Meanwhile, using the ratio 

method the average depth also decreases by 4.76% when the attenuation coefficient in 

both bands is increased by 5% and the average depth is unaltered by a 5% increase in 

the incident radiation and bottom reflectance term in both bands.  Increasing the 

attenuation coefficient of only one calculation band by 5% increases the average 

depth by 1.65% and increasing the incident radiation and bottom reflectance in one 

calculation band by 5% decreases the average depth by 15.91%.  This last error, 

which is significantly higher than the other changes in depth may be caused because 

altering only one bottom reflectance value violates the underlying assumption in the 

derivation of the ratio method. 

V. Results and Discussion 

The following section will expand on the analysis by applying the methods 

described there to all of the relevant data sets and discuss the results. 

A. Volume of Supraglacial Lakes 

Table 14 gives the numerical results of the depth lake analysis on all lake 

images.  For simplicity, only the lake location results from the maximum likelihood 

algorithm are shown here.  The MUSCOX calculations were made using channel nine 

and the Landsat calculations where made using the 441-514 nm band. 
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Table 14: Quantitative comparison of lake depth data using Beer’s Law on MUSCOX 

channel nine and Landsat channel one. 

Data Set 

Maximum 

Depth 

(m) 

Average 

Depth 

(m) 

Total 

Volume 

(m
3
) 

MUSCOX 9 28.83 7.57 178253.06 

MUSCOX 10 38.20 13.19 2173136.6 

MUSCOX 11 31.05 5.40 334104.22 

MUSCOX 16 28.82 4.30 223463.74 

MUSCOX 17 36.62 9.97 692662.29 

Landsat 1 18.53 6.73 2.69·10
7
 

Landsat 2 16.96 8.08 4.73·10
7
 

 

Table 15 gives the results of Beer’s Law on the longer observation channels. 

Table 15: Quantitative comparison of lake depth data using Beer’s Law on MUSCOX 

channel eighteen and Landsat channel two. 

Data Set 

Maximum 

Depth 

(m) 

Average 

Depth 

(m) 

Total 

Volume 

(m
3
) 

MUSCOX 9 10.15 3.54 87810.79 

MUSCOX 10 19.67 7.90 1142137.4 

MUSCOX 11 13.05 4.48 311544.90 

MUSCOX 16 11.98 3.52 227981.28 

MUSCOX 17 14.45 4.54 318872.82 

Landsat 1 7.10 3.47 1.43·10
7
 

Landsat 2 7.78 4.64 2.82·10
7
 

 

The numerical results of the ratio method analysis are given in table 16 for all 

lake data sets. 
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Table 16: Quantitative comparison of lake depth using the ratio method. 

Data Set 

Maximum 

Depth 

(m) 

Average 

Depth 

(m) 

Total 

Volume 

(m
3
) 

MUSCOX 9 7.63 2.39 58892.04 

MUSCOX 10 16.41 6.20 1022349.3 

MUSCOX 11 9.88 4.35 307968.47 

MUSCOX 16 10.10 3.39 237934.13 

MUSCOX 17 9.42 2.87 198123.39 

Landsat 1 5.04 2.57 1.06·10
7
 

Landsat 2 5.89 3.69 2.28·10
7
 

 

All five MUSCOX lake depth images, as calculated using Beer’s Law and 

data from channel nine, are overlaid on the Landsat image from July 19 in figure 48.  

Since all six data sets are graphed using the same color scheme, the MUSCOX 

images are marked with white boxes to show their boundaries.  An examination of 

figure 48 shows that the magnitude of the depth results in the MUSCOX images 

generally follows the trends in the Landsat image. 
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Figure 48: Overlaid lake depth calculations using Beer’s Law on channel nine. 

 

The precision of the lake depth results from Beer’s law are investigated in 

figure 49, which shows a histogram of the differences between arbitrarily selected 

depth results in the MUSCOX images and the average of the depth results of the 

surrounding pixels in the Landsat image.  This figure indicates that the differences 

between the depth results from MUSCOX and Landsat varied widely.  Additionally, 
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the depth error was calculated as the MUSCOX results minus the Landsat results, so 

the prevalence of positive depth errors indicates that the depths calculated using the 

MUSCOX images were generally larger than the Landsat depths, or that the actual 

volume of the lake was reduced between when it was imaged by MUSCOX and when 

it was imaged by Landsat. 

 

Figure 49: Histogram of the differences between the MUSCOX depth results and the 

corresponding Landsat depth results using Beer’s Law on channel nine. 

 

Table 17 gives the average and standard deviation of the depth errors shown 

in figure 49. 

 



www.manaraa.com

  86 

   

   

   

   

   

 

Table 17: Average and standard deviation of the errors in depth calculations using Beer’s 

Law. 

Data Set 
Average Error 

(m) 

Standard Deviation 

of Error 

(m) 

9 3.56 3.62 

10 5.83 3.04 

11 -3.34 2.76 

16 -4.75 2.78 

17 3.41 2.63 

 

Figure 50 shows the lake depths as imaged by Landsat on July 19
th

, and the 

MUSCOX mission, calculated using Beer’s Law on channel 18. 
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Figure 50: Overlaid depth calculations using Beer’s Law on channel 18. 

 

Figure 51 shows the histograms of the error in depth between arbitrarily 

selected water pixels in the MUSCOX images and the nearby pixels in the Landsat 

image. 
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Figure 51: Histogram of errors in depth results as calculation using Beer’s Law on channel 

18. 

 

Table 18 gives the average and standard deviation in the errors in depth shown 

in figure 51. 

Table 18: Average and standard deviation of errors in depth results as calculated using 

Beer’s Law on channel 18. 

Data Set 
Average Error 

(m) 

Standard Deviation 

of Error 

(m) 

9 0.87 1.24 

10 2.94 1.57 

11 -1.15 1.42 

16 -2.18 1.35 

17 -0.33 1.37 

 

The depths of the lake imaged by the MUSCOX mission and Landsat 7 on 

July 19
th

, calculated using the ratio method, are shown in figure 52. 
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Figure 52: Results of depth calculation using the ratio method. 

 

The histogram of the errors between the MUSCOX lake depths and the 

Landsat lake depths are given in figure 53. 
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Figure 53: Histogram of errors in depth using the ratio method. 

 

Table 19 gives the average and standard deviation of the errors in figure 53.  

These results indicate that the ratio method is significantly more precise than Beer’s 

law when calculating lake depth in these images, though the question of which 

method is more accurate remains unanswered. 

Table 19: Average and standard deviation in the errors in lake depth using the ratio 

method. 

Data Set 
Average Error 

(m) 

Standard Deviation 

of Error 

(m) 

9 -0.049 0.86 

10 1.93 1.45 

11 -0.43 1.25 

16 -1.27 1.20 

17 -1.55 1.18 
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B. Detection of Drained Supraglacial Lakes 

The effort to detect drained supraglacial lakes begins with two images, taken 

by Landsat sixteen days apart.  In the earlier image, taken on July 3, 2008 and shown 

with a depth map in figure 54, there are two visible supraglacial lakes.  In the later 

image, taken on July 19, 2008, those lakes have drained.  The average depth in the 

earlier image is 4.52 m, the maximum depth is 9.12 m, and the total volume of both 

lakes is 2.22·10
7
 m

3
, as calculated using Beer’s law on the longer wavelength 

channel.  It should be explained that the black lines which cross these images 

diagonally are strips of missing data due to the scan line corrector failure in the 

ETM+ instrument.  No effort was made to interpolate across the gaps in the data left 

by the scan line corrector failure, so the area and volume results are slight 

underestimations of the actual areas and volumes of the lakes. 

 

Figure 54: July 3
rd

 image of the lakes which would drain by July 17
th

 with calculated 

depths using Beer’s law on channel 2 overlaid. 
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 Applying the same classification algorithms used on the filled lake above to 

both images gives the results shown in figure 55. 

 

Figure 55: Results of classification algorithms on the same two lakes before and after they 

drained. 

 

The quantitative results of the different classification algorithms are given in 

table 20.  Clearly, in the case of the drained lakes, large differences exist between the 

results of the unsupervised algorithm, ISODATA, and the supervised algorithms, 

adaptive boosting and maximum likelihood.  This is indicative of a failure in the 

ISODATA algorithm to isolate former lake pixels from the rest of the scene.  The 

Maximum Likelihood 

July 3rd 

ISODATA Adaptive Boosting 

July 19th 

ISODATA Adaptive Boosting Maximum Likelihood 
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other two algorithms, however, give lake areas which are comparable to the lake 

areas found with water present.  The lake area found using adaptive boosting had a 

34.27 % difference between the two images and the lake area found using maximum 

likelihood had a 19.91% difference between the two areas.  These percent differences 

could be large enough to indicate a lack of accuracy in the drained lake results, 

however, the fact that the drained lake areas are also consistently larger than the filled 

lake areas could be an indication that the areas of the lakes had already contracted 

from their maximum values by the time the July 3
rd

 image was taken, or that the 

classification algorithms detected supraglacial streams in addition to the lakes. 

Table 20: Filled and drained lake areas from Landsat imagery. 

Date 

Lake Area 

(m
2
) 

% Difference from ISODATA 

ISODATA 
Adaptive 

Boosting 

Maximum 

Likelihood 

Adaptive 

Boosting 

Maximum 

Likelihood 

July 3 5.04·10
6
 4.74·10

6
 5.33·10

6
 6.11% 5.56% 

July 19 1.99·10
7
 6.70·10

6
 6.51·10

6
 99.32% 101.54% 

 

The most obvious question to ask next is what features the supervised 

algorithms discovered in their training data which allowed them to successfully 

distinguish between former lake locations and locations where there had never been a 

supraglacial lake.  Since the maximum likelihood algorithm classifies data by 

grouping pixels with similar spectral signatures together, its classification rules 

contain only limited information about the specific features of the spectral signatures 

that caused it to place a pixel in one class or another.  Adaptive boosting, however, 

functions by determining a series of thresholds in the spectral data which it uses to 

classify the data.  These thresholds are shown in figure 56 along with the observed 
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spectral values of the two ground types.  Averaging together the various thresholds 

for each observing channel, adaptive boosting determined that a pixel is the location 

of a former lake if the value in channel 1 is above 0.86, channel 2 is above 0.75, 

channel 3 is below 0.78, channel 4 is below 0.39, channel 5 is above 0.05, and 

channel 6 is above 0.04.  This summary is not exact because it ignores the input of 

multiple thresholds with different weights applied to the same channel, but it shows 

that, in general, adaptive boosting determined that pixels where water used to be 

located is more reflective in short and long wavelengths (below 601 nm and above 

1550 nm) and less reflective in the mid wavelengths than locations where there was 

never liquid water. 

 

Figure 56: Sample former lake and not former lake spectral signatures and threshold 

values as determined by adaptive boosting. 
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To test the usefulness of the trends found in figure 56, figure 57 shows 

grayscale images of the drained lake scene using ratios of bands one through four 

with the hypothesis that the relative reflectivities of the pixels which have and have 

not been the site of liquid water can be used to determine the locations of former 

lakes.  Inclusion of the (channel 1)/(channel 4) and (channel 4)/(channel 2) ratios in 

the training data given to adaptive boosting changes the result slightly, reducing the 

estimated lake area to 6.27·10
6
 m

2
, which is a percent difference of 27.74% from the 

adaptive boosting classification results of the image with filled lakes, an improvement 

of 6.53% from the adaptive boosting results without the ratio data. 

 

Figure 57: Drained lake images plotting using ratios of spectral data. 

 

Figure 58 shows the spectral data from the drained lake image versus the 

depth data from the filled lake image which corresponds in location.  Clearly, there is 

not a strong correlation between the reflectivity of the ice at the location of a drained 

Channel 4/Channel 2 Channel 1/Channel 4 
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lake and the depth of the former lake.  This is confirmed in table 21, which gives the 

correlation coefficient between depth and the spectral data of former lake pixels, 

including the two band ratios investigated in figure 58. 

 

Figure 58: Scatterplot of drained lake spectral data versus filled lake depth. 

 

In table 21, the strongest correlations are indicated between depth and the 

band ratios; however, investigation of figure 58 shows that there is only a large 

difference in the band ratios at the largest depths.  Thus, these band ratios could be of 
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possible use in locating former lakes, but would be less valuable in determining the 

extent of the lakes. 

Table 21: Correlation between filled lake depth and drained lake spectral data. 

Channel Correlation Coefficient 

1 0.17 

2 0.15 

3 -0.028 

4 -0.24 

5 0.00046 

7 -0.014 

1/4 0.33 

4/2 -0.58 

 

There is the additional possibility that the presence of liquid water on top of 

an ice shelf will affect other parameters than reflectivity.  As discussed above, liquid 

water has a lower albedo than ice, meaning that it absorbs more incident radiation, 

which increases its temperature.  Since nature seeks equilibrium, this increase in heat 

is transferred from the water to the surrounding ice through convection and 

conduction, which will increase the temperature of the ice and cause it to melt.  The 

ice which is left behind after the surrounding ice is melted due to contact with liquid 

water could have a different texture than ice which has not melted since its formation, 

a possibility which will be investigated using three images gathered by the MUSCOX 

mission, shown in figure 59.  These images correspond to data sets 20, 21, and 22 as 

given in table 23 and are located in the middle of a drained glacial lake, on unaltered 

ice, and on the edge of a drained glacial lake, containing both drained lake and bare 

ice pixels, respectively. 
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Figure 59: Drained lake, bare ice, and combination MUSCOX data sets. 

 

The notion that the presence of water changes the texture of the ice on which 

it is located is confirmed in figure 60 which shows the results of a co-occurrence 

analysis on data set 23.  The co-occurrence analysis used a shifting three by three 

matrix of pixels to compute several statistical parameters.  The output parameters of 

variance, contrast, and dissimilarity were chosen to be shown here because they show 

the largest differences between drained lake pixels and bare ice pixels.  As figure 60 

indicates, the presence of water does change the texture of the ice which is left behind 

Data Set 20 

Data Set 21 

Data Set 23 
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when it drains, slightly decreasing the variance, contrast, and dissimilarity of the ice 

at wavelengths between approximately 600 and 800 nm. 

 

Figure 60: Results of a co-occurrence analysis on data set 23. 

 

Figure 61 shows the results of applying maximum likelihood to the raw 

spectral data and to the texture data in MUSCOX data set 23.  As this figure shows, 

the results from the texture analysis found a larger former lake area and has more 

clearly marked boundaries between former lake and unaltered ice.  It is unknown 

which result is more accurate.  The results from the raw data appear to match better 

with the lake boundaries in the July 3
rd

 Landsat image, but it is possible that the 
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Landsat image was taken after the size of the lake had contracted from its maximum 

value. 

 

Figure 61: Results of applying maximum likelihood to the raw data and the texture data of 

MUSCOX data set 23. 

 

The trend that the presence of liquid water on an ice shelf changes the texture 

of the ice is continued in figure 62, which shows the results of an identical co-

occurrence analysis on MUSCOX data set 20, which is located entirely within a 

drained supraglacial lake, and data set 21, which consists of unaltered ice.  

Comparison of figures 60 and 62 indicates that the exact nature of the texture of the 

unaltered ice and the way that the texture is modified by the presence of liquid water 

is not constant, but the texture of ice is nevertheless changed by melt ponds, and that 

Maximum likelihood on raw data 

Maximum likelihood on texture data 



www.manaraa.com

  101 

   

   

   

   

   

change is detectable.  The most likely reason for the lack of absolute “texture 

signatures” in the data is the fact that ice is a natural ground type, subject to variations 

due to various factors, such as wind during its formation and movement of the ice 

itself. 

 

Figure 62: Results of a co-occurrence analysis on data sets 20 and 21. 

 

C. Frequency of Supraglacial Lake Occurrence 

Landsat 7 images of the Greenland Ice Sheet during the melt seasons of 2007, 

2008, and 2009 are shown in figure 63.  These images were selected from all the data 

gathered between April and October of those years for lack of cloud cover.  They 

were also subsetted to include only the center strip of the images, attempting to avoid 
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gaps in the data due to the scan line corrector failure. 

 

Figure 63: True color Landsat 7 images of the Greenland Ice Sheet in 2007, 2008, and 2009. 

5/14/07 7/17/07 

6/1/08 7/3/08 7/19/08 

4/1/09 7/6/09 8/7/09 8/23/09 
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Figure 64 gives the results of ground classification through maximum 

likelihood for the same data sets.  Data sets which did not include any supraglacial 

lakes were not included in this figure. 

 

Figure 64: Results of maximum likelihood classification on Landsat images of the 

Greenland Ice Sheet from 2007, 2008, and 2009. 

7/17/07 

6/1/08 7/3/08 7/19/08 

7/6/09 8/7/09 8/23/09 
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The total area of each image and the area of the image where liquid water was 

located are given in table 22, along with an approximate tally of the number of 

individual lakes.  Efforts to calculate the depths of the lakes using Beer’s law and the 

ratio method used above produced an excessive number of invalid results, meaning 

negative calculated depth results, indicating that the assumptions discussed in the 

preprocessing section, while valid for a small region of an image, begin to break 

down for the larger areas in the images discussed here.  Thus, no lake depths will be 

reported here and the task of calculating lake depth over a wide area of the Greenland 

Ice Sheet will be left for future work. 

Table 22: Quantitative results of maximum likelihood on Landsat images of the Greenland 

Ice Sheet from 2007, 2008, and 2009. 

Date 
Image Area 

(km
2
) 

Lake Area 

(km
2
) 

% Lake Area 

(%) 

Number of 

Lakes 

5/14/07 2913.99 0 0 0 

7/17/07 3397.35 37.38 1.10 18 

6/1/08 3176.18 0 0 0 

7/3/08 2935.95 47.44 1.62 42 

7/19/08 3013.27 31.57 1.05 21 

4/1/09 3208.69 0 0 0 

7/6/09 3083.02 40.63 1.32 32 

8/7/09 3160.96 22.08 0.70 8 

8/23/09 3114.57 12.88 0.41 3 

 

The number of lakes and percentage of image area covered in lakes over time 

is shown in figure 65, combining data from all three study years.  These results echo 

the findings of Sundal et. al. (2009) which found that supraglacial lake coverage in 

Greenland tends to peak between the 180
th

 and 220
th

 day of the year (June 29
th

 to 

August 8
th

 in non-leap years). 
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Figure 65: Number of lakes and percent lake area versus time. 

 

Figure 66 was produced by adding the band math channels of band one over 

band four and band four over band two to the raw data in the Landsat images and 

using maximum likelihood to determine the locations of the filled and drained lakes.  

Only images which were likely to contain drained lakes were included in this 

analysis.  The criterion used to determine which images were likely to include drained 

lakes were time of year and whether or not an image which was recorded earlier in 

that same year contained filled lakes.  Though these results contain several obvious 

places where the predicted drained lake has a much larger area than might be 

expected, the drained lake results also highlight many former lakes and streams, 

providing a level of detail which was not possible in the raw data analysis alone. 
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Figure 66: Results of the maximum likelihood algorithm applied to the raw and band math 

data from Landsat 7 in 2007, 2008, and 2009, searching for filled and drained lakes. 

7/19/08 

7/17/07 

7/3/08 

7/6/09 8/7/09 8/23/09 
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Table 23 gives the quantitative filled and drained lake areas in these images.  

The use of additional training data for the drained lakes changed the filled lake results 

as well as adding the drained lake results.  This is because the additional training data 

changes the parameters of the discriminant function in the maximum likelihood 

algorithm. 

Table 23: Quantitative results of maximum likelihood on Landsat images including band 

math, searching for filled and drained lakes. 

Date 

Image 

Area 

(km
2
) 

Filled Lake 

Area 

(km
2
) 

% Filled 

Lake 

Area 

(%) 

Drained 

Lake 

Area 

(km
2
) 

% Drained 

Lake Area 

(%) 

5/14/07 2913.99 0 0 0 0 

7/17/07 3397.35 17.71 0.52 338.35 9.96 

6/1/08 3176.18 0 0 0 0 

7/3/08 2935.95 48.64 1.66 422.44 14.39 

7/19/08 3013.27 32.10 1.07 307.35 10.20 

4/1/09 3208.69 0 0 0 0 

7/6/09 3083.02 36.82 1.19 79.15 2.57 

8/7/09 3160.96 22.15 0.70 402.11 12.72 

8/23/09 3114.57 8.88 0.29 574.14 18.43 

 

The change in filled and drained lake area versus day of year for all images is 

given in figure 67.  As this figure indicates, though there is a significant amount of 

uncertainty in the drained lake results, the general trend that the percent of total area 

covered by drained lakes increases throughout the melt season is consistent with the 

fact that lakes fill then drain throughout the summer. 
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Figure 67: Percent filled and drained lake area over time. 

 

Expanding the texture analysis performed on former lake images from the 

MUSOX mission above, figure 68 shows the results of a texture analysis on a former 

lake in the Landsat image from July 19, 2008 along with an analysis of the raw data 

in the image for comparison.  Clearly, any modifications which liquid water makes to 

the texture of the surrounding ice is not visible in this Landsat 7 data. 
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Figure 68: Texture analysis of a drained lake imaged by Landsat 7.   

a) The lake on July 3, 2008, before it drained.  b) The same location on July 19, 2008, after 

it had drained.  c) The variance in bands one (blue), two (green), and three (red).  d) The 

results of ISODATA on the variance, contrast, and dissimilarity texture data.  e) The 

results of ISODATA on the raw data.  f) The results of maximum likelihood on the texture 

data.  g) The results of maximum likelihood on the raw data. 

   

The lack of accurate results from the texture analysis is in contrast to the 

outcome of investigation on texture in the MUSCOX images of drained lakes, which 

showed that there are visible differences in variance, contrast, and dissimilarity 

between drained lake ice and unaltered ice.  The most likely reason for this is the 

differences in the spatial resolutions of the two instruments.  The spatial resolution of 

the MUSCOX instrument depends upon the altitude of the UAV, but is generally 

approximately 30 cm for the ice observations, whereas the resolution of the ETM+ is 

30 meters in the observing bands used for this analysis.  It is possible that any 

modifications that liquid water makes to the texture of ice is on so fine a scale as to 

make it undetectable by an instrument with 30 meter spatial resolution.  The prudent 

next step would be to attempt to confirm or refute this hypothesis through lab or field 

a) b) c) 

d) e) f) g) 
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experiments, but that effort is left up to future researchers. 

VI. Conclusion 

The volume and frequency of supraglacial lakes are affected by incoming 

radiation from the sun and the temperature of the ice on which they form.  The 

occurrence of glacial lakes can lead to additional lakes because of a positive feedback 

loop created because water absorbs more radiation than ice.  As a result, an increased 

frequency of and volume glacial lakes can be a symptom of global climate change.  

The lakes are a valuable parameter in the mass budget of the cryosphere and a useful 

proxy for measuring climate change.  Therefore, monitoring glacial lakes with high 

spatial and temporal resolution is important to increasing scientific understanding of 

the cryosphere and the Earth climate system as a whole. 

This report documented the analysis of hyperspectral data with very high 

spatial resolution of melt ponds on a glacier near the southwest coast of Greenland.  

The data were mined for the locations of the ponds using three different algorithms: 

Iterative Self-Organizing Data Analysis Technique, adaptive boosting, and the 

maximum likelihood algorithm.  Once the water pixels were located, the depth of the 

water was calculated using Beer’s Law and a modification of Beer’s law using two 

observing bands, and the volume of the lakes was determined. 

Examination of the results of the ground categorization algorithms showed 

that the accuracy of the outcome is highly dependent upon the quality of the input 

data.  This fact dictates that training data for the adaptive boosting and maximum 

likelihood algorithms must be chosen to represent all subtypes of data within each 
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data class, so that the algorithm will, for example, classify shallow water as water 

instead of ice.  It also casts doubt upon the accuracy of the unsupervised algorithm 

ISODATA, which can only be modified through statistical thresholds.  As a result, 

ISODATA was used only for comparison with the other two algorithms.  Contrasting 

the lake boundaries found when the two supervised algorithms were applied to 

MUSCOX data to the results of the same ground classification techniques on 

coincident data gathered by Landsat 7 showed that the results are generally accurate, 

with the boundaries matching to within about 300 meters, which is an acceptable 

level of error considering that the observations were not coincident in time and the 

boundaries of supraglacial lakes can change rapidly, and given that the Landsat data 

has 30 meter resolution. 

Attempts to determine the depths of the lakes were complicated by a 

wavelength dependent attribute of the water or lake bottom which the simple 

attenuation coefficient of pure water does not account for.  As a result, the depth 

calculations produced different results depending upon which observing channel was 

used in the calculation.  This effect was particularly prevalent in the depths found 

using Beer’s law; the ratio method was slightly more stable.  Analysis of Landsat data 

from July 19, 2008, using the ratio method, indicates that the filled lake had a volume 

of 2.28·10
7
 m

3
.  Though the ratio method is less sensitive to variations in lake bottom 

reflectivity and attenuation coefficient and therefore likely to be more accurate than 

Beer’s law, the absolute accuracy of these results is unknown. 

The analysis then moved to the images of drained supraglacial lakes which 
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were imaged by both MUSCOX and Landsat 7.  Investigation into this data revealed 

minimal differences in the spectral data between ice which had been the location of a 

supraglacial lake and unaltered ice, but slight changes in the texture of the ice was 

detected in the MUSCOX data.  An identical texture analysis on the Landsat data did 

not reveal the same changes, indicating that the alterations to the texture of the ice are 

not visible to instruments with a 30 meter spatial resolution.  Further analysis is 

required to determine if texture analysis is a viable method of determining the 

locations of drained supraglacial lakes and whether the texture data can be used to 

determine the depth of the former lake and how long before the observation the lake 

drained.  Analysis also showed that adding band ratio data to the ground classification 

algorithms can improve the estimates of supraglacial lake locations, but no significant 

correlation between spectral or band ratio data and former lake depth was detected.  

However, both texture analysis and band ratio analysis have the potential to provide a 

useful supplement to the change detection method of locating drained supraglacial 

lakes because they could be used to find drained lakes even if the lake was never 

imaged while full. 

Finally, a low level analysis on Landsat data during the summers of 2007, 

2008, and 2009 showed the seasonal trends in lake occurrence, indicating that the 

number and total areas of lakes on the Greenland Ice Sheet increase until 

approximately midsummer then begin to drain or freeze as winter approaches.  The 

sample size in the analysis was not large enough to draw any conclusions about year 

to year trends in the frequency or size of supraglacial lakes. 
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A. Advantages and Disadvantages of Imagery Recorded by a UAV 

Since the MUSCOX mission was a proof of concept for the use of UAVs in 

imaging the ice sheet, this section will list some advantages and disadvantages of the 

practice, from the perspective of the individual analyzing the data. 

Some of the advantages of working with the MUSCOX data are as follows: 

 The very high spatial resolution imagery allowed for very accurate results in 

calculated lake area and volume. 

 The high spatial resolution allowed for texture analysis which was not 

possible in lower resolution data. 

 The high spectral resolution allows for more accurate matching of spectral 

signatures. 

 Some of the disadvantages of working with the MUSCOX data are as follows: 

 No single data set imaged an entire lake. 

 The maneuvers of the aircraft meant that the spatial resolution of each pixel 

had to be calculated separately. 

 No single data set included both lake data and the deep water data useful in 

calculating water depth. 

B. Avenues for Future Work 

There are several ways in which this project could be expanded and 

continued, such as the following: 

 Classify the images using an algorithm which uses the fact that neighboring 

pixels are statistically more likely to have the same ground type. 
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 Perform laboratory or field experiments on the effect of liquid water on ice, 

paying particular attention to the changes in reflectivity and texture. 

 Investigate the possibility of suspended or settled sediment in supraglacial 

lakes affecting the depth calculations by taking samples of actual lakes in 

Greenland and testing the attenuation coefficient of that water. 

 Investigate the effect of ice crystals on lakes to determine if their presence 

changes the reflectivity of the lake in a way that alters the results of depth 

calculations by performing laboratory experiments. 

 Repeat the experiment with in situ depth measurements of the lakes that are 

imaged by the UAV. 

 Expand the analysis of the long term data of the Greenland Ice Sheet, looking 

for information about the water budget of the area, which can be added to the 

climate model of the Earth and provide valuable information concerning the 

theory of global climate change. 



www.manaraa.com

  115 

   

   

   

   

   

VII. Bibliography 

Bindschadler, R.A., Scambos, T.A., Choi, H., Haran, T.M.  “Ice sheet change 

detection by satellite image differencing.”  Remote Sensing of Environment, Vol. 114, 

No. 7, pp. 1353-1362, 15 July 2010. 

 

Boulton, G.S.  “Glaciers and their coupling with hydraulic and sedimentary 

processes.”  Glacier Science and Environmental Change, edited by Peter G. Knight.  

Black Science Ltd., Carlton, Victoria, Australia, 2006, pp. 3-22. 

 

Box, J.E., and Ski, K.  “Remote sounding of Greenland supraglacial melt lakes: 

implications for subglacial hydraulics.”  Journal of Glaciology, Vol. 53, No. 181, pp. 

257-265, 2007. 

 

CRC Handbook of Chemistry and Physics, 91
st
 Edition, Internet Version 2011.  Ed. 

W.M. Haynes.  [online resource].  URL:  http://www.hbcpnetbase.com  [cited: 14 

February 2011]. 

 

Das, S.B., Joughin, I., Behn, M.D., Howal, I.M, King, M.A., Lizarralde, D., and 

Bhatia, M.P.  “Fracture Propagation to the Base of the Greenland Ice Sheet During 

Supraglacial Lake Drainage.”  Science, Vol. 320, No. 5877, pp. 778-781, 9 May 

2008.  URL: http://www.sciencemag.org/content/320/5877/778.full 

doi: 10.1126 

 

Earth Observing System Data and Information System (EOSDIS). 2009. Earth 

Observing System ClearingHOuse (ECHO) / Warehouse Inventory Search Tool 

(WIST) Version 10.X [online application]. Greenbelt, MD: EOSDIS, Goddard Space 

Flight Center (GSFC) National Aeronautics and Space Administration (NASA). URL: 

https://wist.echo.nasa.gov/api/ 

 

Eicken, H., Grenfell, T.C., Perovich, D.K., Richter-Menge, J.A., Frey, K.  “Hydraulic 

controls of summer Arctic pack ice albedo.”  Journal of Geophysical Research, Vol. 

109, No. C8, 15 August 2004. 

doi: 10.1029 

 

Freund, Y. and Schapire, R.E.  “A Decision-Theoretic Generalization of On-Line 

Learning and an Application to Boosting.”  Journal of Computer and System 

Sciences, Vol. 55, pp. 119-139, August 1997. 

Article no. SS971504 

 

Georgiou, S., Shepherd, A., McMillan, M., Nienow, P.  “Seasonal evolution of 

supraglacial lake volume from ASTER imagery.”  Annals of Glaciology, Vol. 50, No. 

52, pp. 95-100, October 2009. 

 



www.manaraa.com

  116 

   

   

   

   

   

Greuell, W., de Ruyter de Wildt, M.  “Anisotropic Reflection by Melting Glacier Ice: 

Measurements and Parametrizations in Landsat TM Bands 2 and 4.”  Remote Sensing 

of the Environment, Vol. 70, pp. 265-277, December 1999. 

 

Landsat data available from the U.S. Geological Survey. 

 

Lyzenga, David R.  "Passive remote sensing techniques for mapping water depth and 

bottom features."  Applied Optics, Vol. 17, No. 3, pp. 379-383, 1 February 1978. 

 

McMillan, M., Nienow, P., Shepherd, A., Benham, T., Sole, A.  “Seasonal evolution 

of supra-glacial lakes on the Greenland Ice Sheet.”  Earth and Planetary Science 

Letters, Vol. 262, No. 3-4, pp. 484-492, 30 Oct. 2007. 

 

Meeus, Jean.  Astronomical Formulae for Calculators, 2
nd

 ed.  Willmann-Bell, Inc., 

Richmond, Virginia, 1982. 

 

NASA: Landsat 7 Science Data Users Handbook [online reference].  12 March 2009.  

URL: http://landsathandbook.gsfc.nasa. gov/handbook/handbook_toc.html [cited: 29 

November 2010]. 

 

Nishii, R. and Eguchi, S.  “Supervised Image Classification of Multi-Spectral Images 

Based on Statistical Machine Learning.”  Image Processing for Remote Sensing, 

edited by C.H. Chen.  Taylor & Francis Group, Boca Raton, FL, pp. 79-105, 2008. 

 

Painter, T.H., Dozier, J.  “Measurements of the hemispherical-directional reflectance 

of snow at fine spectral and angular resolution.”  Journal of Geophysical Research, 

Vol. 109, No. D18, pp. 27, 27 September 2004 

doi:10.1029. 

 

Perovich, D.K., Tucker III, W.B., and Ligett, K.A.  “Aerial observations of the evolution 

of ice surface conditions during summer.”  Journal of Geophysical Research, Vol. 107, 

No. C10, 26 October 2002 

doi: 10.1029 

 

Petty, G.W.  A First Course in Atmospheric Radiation, 2
nd

 Ed.  United States of 

America, 2006. 

 

Richards, J.A., Jia, X.  Remote Sensing Digital Image Analysis An Introduction, 4
th

 

ed.  Springer-Verlage Berlin Heidelberg, Germany, chap. 8, 2006. 

 

Satterwhite, M.B., Mitchell, H., Hemmer, T., Leckie, J.D.  “Field Spectral Signatures 

of Snow, Ice, and Water.”  Proceedings of the SPIE-The International Society for 

Optical Engineering, Vol. 5093, No. 1, pp. 528-537, 2003. 

 



www.manaraa.com

  117 

   

   

   

   

   

Scaramuzza, P.L., Markham, B.L., Barsi, J.A., Kaita, E.  “Landsat-7 ETM+ On-Orbit 

Reflective-Band Radiometric Characterization.”  IEEE Transactions on Geoscience 

and Remote Sensing, Vol. 42, No. 12, December 2004. 

 

Sinnott, R.W.  “Virtues of the Haversine.”  Sky and Telescope, Vol. 68, No. 2, pp. 

159, 1984. 

 

Smith, R.C., and Baker, K.S.  “Optical properties of the clearest natural waters (200-

800 nm).”  Applied Optics, Vol. 20, No. 2, pp. 177-184, 15 January 1981. 

 

Sneed, W.A., and Hamilton, G.S.  “Evolution of melt pond volume on the surface of 

the Greenland Ice Sheet.”  Geophysical Research Letters, Vol. 34, No. 3, pp. 1-4, 16 

February 2007. 

 

“Solar Calculation Details.”  Earth System Research Laboratory Global Monitoring 

Division [online resource].  URL: 

http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html [cited: 26 January 2011] 

 

Stroeve, J., Nolin, A., Steffen, K.  “Comparison of AVHRR-Derived and In Situ 

Surface Albedo over the Greenland Ice Sheet.”  Remote Sensing of the Environment, 

Vol. 62, pp. 262-276, December 1997. 

 

Sundal, A.V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., Huybrechts, P.  

“Evolution of supra-glacial lakes across the Greenland Ice Sheet.”  Remote Sensing of 

Environment, Vol. 113, No. 10, pp. 2164-2171, 30 October 2007. 

 

Tou, J.T., and Gonzalez, R.C.  Pattern Recognition Principles.  Addison-Wesley 

Publishing Company, Inc., United States of America, 1974. 

 

Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.  “Surface 

Melt-Induced Acceleration of Greenland Ice-Sheet Flow.”  Science, Vol. 297, pp. 218-

222, 12 July 2002. 

 

 



www.manaraa.com

  118 

   

   

   

   

   

VIII. Appendix 

a. Nomenclature 

a = Absorption coefficient   (unitless) 

b = Backscatter coefficient   (unitless) 

b̂  = Aircraft body frame    (unitless) 

cp = Specific heat capacity    (J/g/K) 

D = Distance     (m) 

d = Thickness     (m) 

f = Slant angle correction    (unitless) 

g = Acceleration due to gravity   (m/s
2
) 

gj = Discriminant function    (unitless) 

I = Irradiance     (W/m
2
) 

k = Radiative transfer constant   (W/m
2
) 

m = Ratio of indices of refraction   (unitless) 

mj = Average of data in class j   (unitless) 

N = Real index of refraction   (unitless) 

ni = Imaginary index of refraction   (unitless) 

()p  = Probability of belonging to a data class (unitless) 

RE = Radius of earth    (m) 

r = Reflectivity     (unitless) 

s = Path length     (m) 

sza = Solar zenith angle    (degrees) 
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t = Transmittance     (unitless) 

X’ = Resolution of ground pixel   (m) 

x = Depth      (m) 

x


 = Spectral data     (unitless) 

z


 = Slant direction to ground pixel  (unitless) 

α = Surface slope angle    (degrees) 

β = Total absorption coefficient   (m
-1

) 

γ = Longitude     (degrees) 

ΔHfus = Heat of fusion     (kJ/kg) 

ΔT = Change in temperature   (K) 

Δt = Change in time    (seconds) 

δ = Angle of ground pixel    (degrees) 

λ = Wavelength     (nm, m) 

ρ = Density     (g/m
3
) 

Σj = Covariance matrix    (unitless) 

θ = Pitch angle     (degrees) 

θo = Angle of incidence    (degrees) 

θr = Angular resolution    (degrees) 

θt = Angle of transmittance   (degrees) 

τ = Shear Stress     (kPa) 

φ = Roll angle     (degrees) 

ψ = Latitude     (degrees) 
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ωj = Data class     (unitless) 

 

Subscripts 

a = Absorbed 

i = Ice 

j = Data class 

l = Lake bottom 

o = Incident 

s = Optically deep 

w = Water 

1 = Irradiance subscript, medium, band, location 

2 = Irradiance subscript, medium, band, location 

3 = Irradiance subscript 

↑ = Upwelling 

↓ = Downwelling 
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b. MUSCOX Data Information 

Table 24: MUSCOX data sets. 

Data 

Set 

Start Date 

and Time 

(GMT) 

Duration 

(sec) 
Target Center Location 

Nadir Spatial 

Resolution 

(cm) 

1 
7/9/08 

00:03:54.24 
9.55 Runway 

69
o
14’33.66” N 

51
o
3’30.05” W 

6.06 

2 
7/9/08 

00:05:39.24 
10.68 Runway 

69
o
14’33.39” N 

51
o
3’30.29” W 

6.06 

3 
7/9/08 

00:07:24.25 
9.55 Runway 

69
o
14’33.37” N 

51
o
3’30.73” W 

6.06 

4 
7/9/08 

00:09:09.24 
11.01 Runway 

69
o
14’32.98” N 

51
o
3’31.02” W 

6.06 

5 
7/9/08 

00:10:51.24 
13.49 Runway 

69
o
14’35.14” N 

51
o
3’40.10” W 

4.48 

6 
7/16/08 

01:08:06.49 
4.96 

Outflow 

Region 

69
o
9’31.67” N 

50
o
51’20.16” W 

10.08 

7 
7/16/08 

01:16:12.49 
5.94 

Outflow 

Region 

69
o
9’31.91” N 

50
o
51’20.06” W 

10.08 

8 
7/17/08 

02:56:26.44 
123.11 

Drained 

Lake 1 

68
o
44’49.11” N 

49
o
31’43.72” W 

29.2642 

9 
7/17/08 

03:09:11.44 
37.00 

Filled 

Lake 

68
o
43’6.90” N 

49
o
2’3.68” W 

32.75 

10 
7/17/08 

03:11:29.44 
140.13 

Filled 

Lake 

68
o
42’29.33” N 

49
o
1’21.61” W 

32.75 

11 
7/18/08 

01:41:19.49 
62.05 

Filled 

Lake 

68
o
42’35.54” N 

49
o
1’31.00” W 

32.75 

12 
7/18/08 

02:22:49.49 
3.95 

Drained 

Lake 1 

68
o
45’7.50” N 

49
o
30’59.68” W 

29.26 

13 
7/18/08 

02:24:40.50 
2.94 

Drained 

Lake 2 

68
o
43’28.84” N 

49
o
30’59.99” W 

29.26 

14 
7/18/08 

02:33:44.21 
7.93 

Drained 

Lake 2 

68
o
43’42.20” N 

49
o
31’57.43” W 

Unknown 

15 
7/18/08 

02:34:05.28 
6.95 

Drained 

Lake 2 

68
o
43’24.15” N 

49
o
31’57.11” W 

Unknown 

16 
7/19/08 

02:04:38.04 
62.04 

Filled 

Lake 

68
o
42’35.33” N 

49
o
1’31.36” W 

32.75 

17 
7/19/08 

02:08:02.04 
65.05 

Filled 

Lake 

68
o
42’29.47” N 

49
o
1’57.45” W 

32.75 

18 
7/19/08 

02:56:38.04 
22.99 

Drained 

Lake 2 

68
o
42’59.71” N 

49
o
30’13.49” W 

29.26 
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Table 24 continued: MUSCOX data sets. 

Data 

Set 

Start Date 

and Time 

(GMT) 

Duration 

(sec) 
Target Center Location 

Nadir Spatial 

Resolution 

(cm) 

19 
7/19/08 

02:59:50.04 
24.00 

Drained 

Lake 2 

68
o
43’20.46” N 

49
o
30’1.00” W 

29.26 

20 
7/19/08 

03:02:47.04 
22.99 

Drained 

Lake 2 

68
o
43’39.68” N 

49
o
30’14.26” W 

29.27 

21 
7/19/08 

03:08:56.04 
22.99 

Between 

Drained 

Lakes 

68
o
44’19.68” N 

49
o
30’16.12” W 

29.26 

22 
7/19/08 

03:12:05.05 
23.97 

Between 

Drained 

Lakes 

68
o
44’49.50” N 

49
o
30’2.56” W 

29.26 

23 
7/19/08 

03:15:05.05 
23.97 

Drained 

Lake 1 

68
o
44’59.69” N 

49
o
30’16.87” W 

29.26 

24 
7/19/08 

04:25:38.09 
9.65 Runway 

69
o
14’41.97” N 

51
o
3’45.48” W 

7.75 

25 
7/19/08 

04:26:32.09 
18.63 Runway 

69
o
14’26.21” N 

51
o
3’45.46” W 

7.66 

26 
7/19/08 

04:28:20.09 
15.09 Runway 

69
o
14’28.77” N 

51
o
3’39.37” W 

7.67 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

  123 

   

   

   

   

   

Table 25: MUSCOX channels. 

Band 

Central 

Wavelength 

(nm) 

Band 

Central 

Wavelength 

(nm) 

Band 

Central 

Wavelength 

(nm) 

1 401.21 21 593.21 41 785.21 

2 410.81 22 602.81 42 794.81 

3 420.41 23 612.41 43 804.41 

4 430.01 24 622.01 44 814.01 

5 439.61 25 631.61 45 823.61 

6 449.21 26 641.21 46 833.21 

7 458.81 27 650.81 47 842.81 

8 468.41 28 660.41 48 852.41 

9 478.01 29 670.01 49 862.01 

10 487.61 30 679.61 50 871.61 

11 497.21 31 689.21 51 881.21 

12 506.81 32 698.81 52 890.81 

13 516.41 33 708.41 53 900.41 

14 526.01 34 718.01 54 910.01 

15 535.61 35 727.61 55 919.61 

16 545.21 36 737.21 56 929.21 

17 554.81 37 746.81 57 938.81 

18 564.41 38 756.41 58 948.41 

19 574.01 39 766.01 59 958.01 

20 583.61 40 775.61 60 967.61 
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